Citation: WANG Ming-Yong, WANG Zhi, GUO Zhan-Cheng. NiW Alloys Electrodeposited under Super Gravity Field and Their Anti-Corrosion Properties in Alkaline Solutions[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3163-3168. doi: 10.3866/PKU.WHXB20101142
-
NiW alloys were electrodeposited under a super gravity field. The effects of super gravity on the partial current density, W content, and cell voltage were studied. The surface morphologies of the NiW films were characterized by scanning electron microscopy (SEM). The anti-corrosion properties and stability of the NiW films in NaOH solution were also studied by Tafel, electrochemical impedance spectroscopy (EIS), and 144 h exposure test. The results indicate that the W content increases with the gravity coefficient (G) and no cracks are produced on the surface of the NiW alloys electrodeposited under the super gravity field. Compared with those electrodeposited under normal gravity conditions, the self-corrosion potentials of the NiW alloys electrodeposited under a super gravity field shifts in a positive direction and the self-corrosion current densities become smaller. Meanwhile, the corrosion resistance also increases from 865 to 2305 Ω·cm2 with an increase in the G value from 1 to 256. After 144 h exposure in 10% (w) NaOH solution, no surface peeling or damage occur. We conclude that when the NiW alloy is electrodeposited under a super gravity field, both the anti-corrosion resistance and the stability of the NiW alloy in the NaOH solution are improved obviously.
-
Keywords:
-
NiW alloy
, - Super gravity field,
- Corrosion,
- Crack,
- Electrodeposition
-
-
-
[1]
1. Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E. Modern aspects of electrochemistry. Vol.42. New York: Springer Science+Business Media, 2008: 229-240
-
[2]
2. ng, R.; Liu, L. Rare Metal Mater. Eng., 2008, 37: 130 [龚睿, 柳林. 稀有金属材料与工程, 2008, 37: 130]
-
[3]
3. Younes, O.; Zhu, L.; Rosenberg, Y.; Shacham-Diamand, Y.; Gileadi, E. Langmuir, 2001, 17: 8270
-
[4]
4. Królikowski, A.; P?ońska, E.; Ostrowski, A.; Donten, M.; Stojek, Z. J. Solid State Electrochem., 2009, 13: 263
-
[5]
5. Alimadadi, H.; Ahmadi, M.; Aliofkhazraei, M.; Younesi, S. R. Mater. Design, 2009, 30: 1356
-
[6]
6. Navarro-Flores, E.; Chong, Z.W.; Omanovie, S. J. Mol. Catal. A-Chem., 2005, 226: 179
-
[7]
7. Metikoš-Hukovi?, M.; Gruba?, Z.; Radi?, N.; Tonejc, A. J. Mol. Catal. A-Chem., 2006, 249: 172
-
[8]
8. Ramshaw, C. Heat Recovery Sys. CHP, 1993, 13: 493
-
[9]
9. Sato, M.; Yamada, A.; Aogaki, R. J. Appl. Phys., 2003, 42: 4320
-
[10]
10. Cheng, H.; Scott, K.; Ramshaw, C. J. Appl. Electrochem., 2002, 32: 831
-
[11]
11. Atobe, M.; Hitose, S.; Nonaka, T. Electrochem. Commun., 1999, 1: 278
-
[12]
12. Atobe, M.; Murotani A.; Hitose, S.; Suda, Y.; Sekido, M.; Fuchigami, T.; Chowdhury, A.; Nonaka, T. Electrochim. Acta, 2004, 50: 977
-
[13]
13. Eftekhari, A. Microelectron. Eng., 2003, 69: 17
-
[14]
14. Liu, T.; Guo, Z. C.;Wang, Z.;Wang, M. Y. Surf. Coat. Technol., 2010, 204: 3135
-
[15]
15. Liu, T.; Guo, Z. C.;Wang, Z.;Wang, M. Y. Appl. Surf. Sci., 2010, 256: 6634
-
[16]
16. Wang, M. Y.;Wang, Z.; Guo, Z. C. Int. J. Hydrog. Energy, 2009, 34: 5311
-
[17]
17. Younes-Metzler, O.; Zhu, L.; Gileadi, E. Electrochim. Acta, 2003, 48: 2551
-
[18]
18. Podlaha, E. J.; Landolt, D. J. Electrochem. Soc., 1996, 143: 885
-
[19]
19. Wang, M. Y.;Wang, Z.; Guo, Z. C. Acta Phys. -Chim. Sin., 2009, 25: 883. [王明涌, 王志, 郭占成. 物理化学学报, 2009, 25: 883]
-
[20]
20. Donten, M.; Cesiulis, H.; Stojek, Z. Electrochim. Acta, 2000, 45: 3389
-
[21]
21. Mizushima, I.; Tang, P. T.; Hansen, H. N.; Somers, M. A. J. Electrochim. Acta, 2005, 51: 888
-
[22]
22. Zhu, L.; Younes, O.; Ashkenasy, N.; Shacham-Diamand, Y.; Gileadi, E. Appl. Surf. Sci., 2002, 200: 1
-
[23]
23. Guo, Z. C.; ng, Y. P.; Lu,W. C. Sci. China Ser. E-Tech. Sci., 2007, 50: 39
-
[24]
24. Eftekhari, A. J. Phys. D-Appl. Phys., 2003, 36: 1183
-
[25]
25. Obradovi?, M.; Stevanovi?, J.; Despi?, A.; Stevanovi?, R.; Stoch, J. J. Serb. Chem. Soc., 2001, 66: 899
-
[1]
-
-
[1]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[2]
Shuyong Zhang , Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078
-
[3]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[4]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[5]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[6]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[7]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[8]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[9]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[10]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[11]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[12]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[1]
Metrics
- PDF Downloads(1241)
- Abstract views(2781)
- HTML views(4)