Citation: WANG Ming-Yong, WANG Zhi, GUO Zhan-Cheng. NiW Alloys Electrodeposited under Super Gravity Field and Their Anti-Corrosion Properties in Alkaline Solutions[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3163-3168. doi: 10.3866/PKU.WHXB20101142 shu

NiW Alloys Electrodeposited under Super Gravity Field and Their Anti-Corrosion Properties in Alkaline Solutions

  • Received Date: 6 August 2010
    Available Online: 20 October 2010

    Fund Project: 国家自然科学基金(50804043, 50674011)资助项目 (50804043, 50674011)

  • NiW alloys were electrodeposited under a super gravity field. The effects of super gravity on the partial current density, W content, and cell voltage were studied. The surface morphologies of the NiW films were characterized by scanning electron microscopy (SEM). The anti-corrosion properties and stability of the NiW films in NaOH solution were also studied by Tafel, electrochemical impedance spectroscopy (EIS), and 144 h exposure test. The results indicate that the W content increases with the gravity coefficient (G) and no cracks are produced on the surface of the NiW alloys electrodeposited under the super gravity field. Compared with those electrodeposited under normal gravity conditions, the self-corrosion potentials of the NiW alloys electrodeposited under a super gravity field shifts in a positive direction and the self-corrosion current densities become smaller. Meanwhile, the corrosion resistance also increases from 865 to 2305 Ω·cm2 with an increase in the G value from 1 to 256. After 144 h exposure in 10% (w) NaOH solution, no surface peeling or damage occur. We conclude that when the NiW alloy is electrodeposited under a super gravity field, both the anti-corrosion resistance and the stability of the NiW alloy in the NaOH solution are improved obviously.

  • 加载中
    1. [1]

      1. Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E. Modern aspects of electrochemistry. Vol.42. New York: Springer Science+Business Media, 2008: 229-240

    2. [2]

      2. ng, R.; Liu, L. Rare Metal Mater. Eng., 2008, 37: 130 [龚睿, 柳林. 稀有金属材料与工程, 2008, 37: 130]

    3. [3]

      3. Younes, O.; Zhu, L.; Rosenberg, Y.; Shacham-Diamand, Y.; Gileadi, E. Langmuir, 2001, 17: 8270

    4. [4]

      4. Królikowski, A.; P?ońska, E.; Ostrowski, A.; Donten, M.; Stojek, Z. J. Solid State Electrochem., 2009, 13: 263

    5. [5]

      5. Alimadadi, H.; Ahmadi, M.; Aliofkhazraei, M.; Younesi, S. R. Mater. Design, 2009, 30: 1356

    6. [6]

      6. Navarro-Flores, E.; Chong, Z.W.; Omanovie, S. J. Mol. Catal. A-Chem., 2005, 226: 179

    7. [7]

      7. Metikoš-Hukovi?, M.; Gruba?, Z.; Radi?, N.; Tonejc, A. J. Mol. Catal. A-Chem., 2006, 249: 172

    8. [8]

      8. Ramshaw, C. Heat Recovery Sys. CHP, 1993, 13: 493

    9. [9]

      9. Sato, M.; Yamada, A.; Aogaki, R. J. Appl. Phys., 2003, 42: 4320

    10. [10]

      10. Cheng, H.; Scott, K.; Ramshaw, C. J. Appl. Electrochem., 2002, 32: 831

    11. [11]

      11. Atobe, M.; Hitose, S.; Nonaka, T. Electrochem. Commun., 1999, 1: 278

    12. [12]

      12. Atobe, M.; Murotani A.; Hitose, S.; Suda, Y.; Sekido, M.; Fuchigami, T.; Chowdhury, A.; Nonaka, T. Electrochim. Acta, 2004, 50: 977

    13. [13]

      13. Eftekhari, A. Microelectron. Eng., 2003, 69: 17

    14. [14]

      14. Liu, T.; Guo, Z. C.;Wang, Z.;Wang, M. Y. Surf. Coat. Technol., 2010, 204: 3135

    15. [15]

      15. Liu, T.; Guo, Z. C.;Wang, Z.;Wang, M. Y. Appl. Surf. Sci., 2010, 256: 6634

    16. [16]

      16. Wang, M. Y.;Wang, Z.; Guo, Z. C. Int. J. Hydrog. Energy, 2009, 34: 5311

    17. [17]

      17. Younes-Metzler, O.; Zhu, L.; Gileadi, E. Electrochim. Acta, 2003, 48: 2551

    18. [18]

      18. Podlaha, E. J.; Landolt, D. J. Electrochem. Soc., 1996, 143: 885

    19. [19]

      19. Wang, M. Y.;Wang, Z.; Guo, Z. C. Acta Phys. -Chim. Sin., 2009, 25: 883. [王明涌, 王志, 郭占成. 物理化学学报, 2009, 25: 883]

    20. [20]

      20. Donten, M.; Cesiulis, H.; Stojek, Z. Electrochim. Acta, 2000, 45: 3389

    21. [21]

      21. Mizushima, I.; Tang, P. T.; Hansen, H. N.; Somers, M. A. J. Electrochim. Acta, 2005, 51: 888

    22. [22]

      22. Zhu, L.; Younes, O.; Ashkenasy, N.; Shacham-Diamand, Y.; Gileadi, E. Appl. Surf. Sci., 2002, 200: 1

    23. [23]

      23. Guo, Z. C.; ng, Y. P.; Lu,W. C. Sci. China Ser. E-Tech. Sci., 2007, 50: 39

    24. [24]

      24. Eftekhari, A. J. Phys. D-Appl. Phys., 2003, 36: 1183

    25. [25]

      25. Obradovi?, M.; Stevanovi?, J.; Despi?, A.; Stevanovi?, R.; Stoch, J. J. Serb. Chem. Soc., 2001, 66: 899


  • 加载中
    1. [1]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    2. [2]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    10. [10]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    12. [12]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    13. [13]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

Metrics
  • PDF Downloads(1241)
  • Abstract views(2918)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return