Citation: WANG Ming-Yong, WANG Zhi, GUO Zhan-Cheng. NiW Alloys Electrodeposited under Super Gravity Field and Their Anti-Corrosion Properties in Alkaline Solutions[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3163-3168. doi: 10.3866/PKU.WHXB20101142 shu

NiW Alloys Electrodeposited under Super Gravity Field and Their Anti-Corrosion Properties in Alkaline Solutions

  • Received Date: 6 August 2010
    Available Online: 20 October 2010

    Fund Project: 国家自然科学基金(50804043, 50674011)资助项目 (50804043, 50674011)

  • NiW alloys were electrodeposited under a super gravity field. The effects of super gravity on the partial current density, W content, and cell voltage were studied. The surface morphologies of the NiW films were characterized by scanning electron microscopy (SEM). The anti-corrosion properties and stability of the NiW films in NaOH solution were also studied by Tafel, electrochemical impedance spectroscopy (EIS), and 144 h exposure test. The results indicate that the W content increases with the gravity coefficient (G) and no cracks are produced on the surface of the NiW alloys electrodeposited under the super gravity field. Compared with those electrodeposited under normal gravity conditions, the self-corrosion potentials of the NiW alloys electrodeposited under a super gravity field shifts in a positive direction and the self-corrosion current densities become smaller. Meanwhile, the corrosion resistance also increases from 865 to 2305 Ω·cm2 with an increase in the G value from 1 to 256. After 144 h exposure in 10% (w) NaOH solution, no surface peeling or damage occur. We conclude that when the NiW alloy is electrodeposited under a super gravity field, both the anti-corrosion resistance and the stability of the NiW alloy in the NaOH solution are improved obviously.

  • 加载中
    1. [1]

      1. Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E. Modern aspects of electrochemistry. Vol.42. New York: Springer Science+Business Media, 2008: 229-240

    2. [2]

      2. ng, R.; Liu, L. Rare Metal Mater. Eng., 2008, 37: 130 [龚睿, 柳林. 稀有金属材料与工程, 2008, 37: 130]

    3. [3]

      3. Younes, O.; Zhu, L.; Rosenberg, Y.; Shacham-Diamand, Y.; Gileadi, E. Langmuir, 2001, 17: 8270

    4. [4]

      4. Królikowski, A.; P?ońska, E.; Ostrowski, A.; Donten, M.; Stojek, Z. J. Solid State Electrochem., 2009, 13: 263

    5. [5]

      5. Alimadadi, H.; Ahmadi, M.; Aliofkhazraei, M.; Younesi, S. R. Mater. Design, 2009, 30: 1356

    6. [6]

      6. Navarro-Flores, E.; Chong, Z.W.; Omanovie, S. J. Mol. Catal. A-Chem., 2005, 226: 179

    7. [7]

      7. Metikoš-Hukovi?, M.; Gruba?, Z.; Radi?, N.; Tonejc, A. J. Mol. Catal. A-Chem., 2006, 249: 172

    8. [8]

      8. Ramshaw, C. Heat Recovery Sys. CHP, 1993, 13: 493

    9. [9]

      9. Sato, M.; Yamada, A.; Aogaki, R. J. Appl. Phys., 2003, 42: 4320

    10. [10]

      10. Cheng, H.; Scott, K.; Ramshaw, C. J. Appl. Electrochem., 2002, 32: 831

    11. [11]

      11. Atobe, M.; Hitose, S.; Nonaka, T. Electrochem. Commun., 1999, 1: 278

    12. [12]

      12. Atobe, M.; Murotani A.; Hitose, S.; Suda, Y.; Sekido, M.; Fuchigami, T.; Chowdhury, A.; Nonaka, T. Electrochim. Acta, 2004, 50: 977

    13. [13]

      13. Eftekhari, A. Microelectron. Eng., 2003, 69: 17

    14. [14]

      14. Liu, T.; Guo, Z. C.;Wang, Z.;Wang, M. Y. Surf. Coat. Technol., 2010, 204: 3135

    15. [15]

      15. Liu, T.; Guo, Z. C.;Wang, Z.;Wang, M. Y. Appl. Surf. Sci., 2010, 256: 6634

    16. [16]

      16. Wang, M. Y.;Wang, Z.; Guo, Z. C. Int. J. Hydrog. Energy, 2009, 34: 5311

    17. [17]

      17. Younes-Metzler, O.; Zhu, L.; Gileadi, E. Electrochim. Acta, 2003, 48: 2551

    18. [18]

      18. Podlaha, E. J.; Landolt, D. J. Electrochem. Soc., 1996, 143: 885

    19. [19]

      19. Wang, M. Y.;Wang, Z.; Guo, Z. C. Acta Phys. -Chim. Sin., 2009, 25: 883. [王明涌, 王志, 郭占成. 物理化学学报, 2009, 25: 883]

    20. [20]

      20. Donten, M.; Cesiulis, H.; Stojek, Z. Electrochim. Acta, 2000, 45: 3389

    21. [21]

      21. Mizushima, I.; Tang, P. T.; Hansen, H. N.; Somers, M. A. J. Electrochim. Acta, 2005, 51: 888

    22. [22]

      22. Zhu, L.; Younes, O.; Ashkenasy, N.; Shacham-Diamand, Y.; Gileadi, E. Appl. Surf. Sci., 2002, 200: 1

    23. [23]

      23. Guo, Z. C.; ng, Y. P.; Lu,W. C. Sci. China Ser. E-Tech. Sci., 2007, 50: 39

    24. [24]

      24. Eftekhari, A. J. Phys. D-Appl. Phys., 2003, 36: 1183

    25. [25]

      25. Obradovi?, M.; Stevanovi?, J.; Despi?, A.; Stevanovi?, R.; Stoch, J. J. Serb. Chem. Soc., 2001, 66: 899


  • 加载中
    1. [1]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    2. [2]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    12. [12]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(1241)
  • Abstract views(2782)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return