Citation:
	            
		            SHI  Jun-You, DONG  Li-Hua, LIU  Yong-Jun. Effect of Hydroxylation on Structures and Proton Transfer of A-T Base Pairs[J]. Acta Physico-Chimica Sinica,
							;2010, 26(12): 3329-3336.
						
							doi:
								10.3866/PKU.WHXB20101136
						
					
				
					
				
	        
- 
	                	
The structures and proton transfer processes of hydroxylated A-T base pairs were theoretically studied at the B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level. Our calculations revealed that hydroxyl radical could react with A-T at different positions to form eight stable adducts. The order of these adducts in energy is 8OHA-T<A-T6OH<A-T5OH<2OHA-T<4OHA-T<5OHA-T<A-T2OH<A-T4OH (the number denotes the label of the atom in the A/T which is attacked by hydroxyl), which relates well with their structural changes upon the addition of hydroxyl radical. The interaction energy between A and T would increase slightly when hydroxyl radical reacts with the adenine, but it would decrease when the radical reacts with thymine. To study the proton transfer processes of the hydroxylated A-T base pairs, the most stable adducts, 8OHA-T and A-T6OH, were selected to give calculations. The calculated results indicate that the proton transfer processes of 8OHA-T and A-T6OH follow the concerted mechanism, which is different from the stepwise mechanism of A-T. What is more, its energy barrier is lower than the corresponding energy of the latter's first step (rate-determining step).
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
1. Breen, A. P.; Murphy, J. A. Free Radical Bio. Med., 1995, 18: 1033
 - 
			
                    [2]
                
			
2. Burrows, C. J.; Muller, J. G. Chem. Rev., 1998, 98: 1109
 - 
			
                    [3]
                
			
3. Steenken, S.; Novais, H. M. J. Phys. Chem., 1987, 91: 426
 - 
			
                    [4]
                
			
4. Vieira, A. J. S. C.; Steenken, S. J. Am. Chem. Soc., 1990, 112: 6986
 - 
			
                    [5]
                
			
5. Steenken, S. Chem. Rev., 1989, 89: 503
 - 
			
                    [6]
                
			
6. Colson, A. O.; Sevilla, M. D. J. Phys. Chem., 1996, 100: 4420
 - 
			
                    [7]
                
			
7. Lowdin, P. O. Adv. Quantum Chem., 1965, 2: 213
 - 
			
                    [8]
                
			
8. Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A. Nature, 1990, 343: 33
 - 
			
                    [9]
                
			
9. Benderskii, V. A.; Makarov, D. E.;Wight, C. A. Chemical dynamic at low temperature: advances in chemical physics. New York:Wiley& Sons, 1994
 - 
			
                    [10]
                
			
10. Zhanpeisov, N. U., Leszczynski, J. J. Phys. Chem. A, 1998, 102: 6167
 - 
			
                    [11]
                
			
11. Truhlar, D. G. Chem. Phys. Lett., 1998, 294: 45
 - 
			
                    [12]
                
			
12. Floribn, J.; Hrouda, V.; Pave1, H. J. Am. Chem. Soc., 1994, 116: 1457
 - 
			
                    [13]
                
			
13. rb, L.; Podolyan, Y.; Dziekonski, P.; Sokalski, A.; Leszczynski, J. J. Am. Chem. Soc., 2004, 126: 10119
 - 
			
                    [14]
                
			
14. Kryachk, E. S.; Sabin, J. R. Int. J. Quantum Chem., 2003, 91: 695
 - 
			
                    [15]
                
			
15. Villani, G. Chem. Phys., 2005, 316: 1
 - 
			
                    [16]
                
			
16. Xie, H.; Xia, F.; Cao, Z. J. Phys. Chem. A, 2007, 111: 4384
 - 
			
                    [17]
                
			
17. Zhang, J. D.; Schaefee III, H. F. J. Chem. Theory Comput., 2007, 3: 115
 - 
			
                    [18]
                
			
18. Grand, A.; Morell, C.; Labet, V.; Cadet, J.; Eriksson, L. A. J. Phys. Chem. A, 2007, 111: 8968
 - 
			
                    [19]
                
			
19. Li, L.;Wang, H.; Niu, X. J.; Li, Z. H. Chem. J. Chin. Univ., 2009, 30: 1596
 - 
			
                    [20]
                
			
[李澜, 王竑, 牛晓娟, 李宗和. 高等学校化 学学报, 2009, 30: 1596]
 - 
			
                    [21]
                
			
20. Zhang, R. B.; Eriksson, L. A. J. Phys. Chem. B, 2007, 111: 6571
 - 
			
                    [22]
                
			
21. Hohenberg, P.; Kohn,W. Phys. Rev. B, 1964, 136: 864
 - 
			
                    [23]
                
			
22. Feller, D. J. Chem. Phys., 1990, 93: 579
 - 
			
                    [24]
                
			
23. Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785
 - 
			
                    [25]
                
			
24. Becke, A. D. J. Chem. Phys., 1993, 98: 5648
 - 
			
                    [26]
                
			
25. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.03. Pittsburgh, PA: Gaussian Inc., 2003
 - 
			
                    [27]
                
			
26. Hammond, G. S. J. Am. Chem. Soc., 1955, 77: 334
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
 - 
				[2]
				
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
 - 
				[3]
				
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
 - 
				[4]
				
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
 - 
				[5]
				
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
 - 
				[6]
				
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
 - 
				[7]
				
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
 - 
				[8]
				
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
 - 
				[9]
				
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
 - 
				[10]
				
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
 - 
				[11]
				
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
 - 
				[12]
				
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
 - 
				[13]
				
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
 - 
				[14]
				
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
 - 
				[15]
				
Lihui Jiang , Wanrong Dong , Hua Yang , Yongqing Xia , Hongjian Peng , Jun Yuan , Xiaoqian Hu , Zihan Zeng , Yingping Zou , Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056
 - 
				[16]
				
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
 - 
				[17]
				
Yongqing Kuang , Jie Liu , Jianjun Feng , Wen Yang , Shuanglian Cai , Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012
 - 
				[18]
				
Yiying Yang , Rongxiu Zhu , Yuchen Ma , Dongju Zhang . MATLAB-based Visualization of Hydrogen-Like Orbitals and Analysis of Relavant Teaching Problems. University Chemistry, 2025, 40(9): 375-382. doi: 10.12461/PKU.DXHX202411015
 - 
				[19]
				
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
 - 
				[20]
				
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1193)
 - Abstract views(3324)
 - HTML views(52)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: