Citation: SHI Jun-You, DONG Li-Hua, LIU Yong-Jun. Effect of Hydroxylation on Structures and Proton Transfer of A-T Base Pairs[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3329-3336. doi: 10.3866/PKU.WHXB20101136 shu

Effect of Hydroxylation on Structures and Proton Transfer of A-T Base Pairs

  • Received Date: 2 August 2010
    Available Online: 18 October 2010

    Fund Project:

  • The structures and proton transfer processes of hydroxylated A-T base pairs were theoretically studied at the B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level. Our calculations revealed that hydroxyl radical could react with A-T at different positions to form eight stable adducts. The order of these adducts in energy is 8OHA-T<A-T6OH<A-T5OH<2OHA-T<4OHA-T<5OHA-T<A-T2OH<A-T4OH (the number denotes the label of the atom in the A/T which is attacked by hydroxyl), which relates well with their structural changes upon the addition of hydroxyl radical. The interaction energy between A and T would increase slightly when hydroxyl radical reacts with the adenine, but it would decrease when the radical reacts with thymine. To study the proton transfer processes of the hydroxylated A-T base pairs, the most stable adducts, 8OHA-T and A-T6OH, were selected to give calculations. The calculated results indicate that the proton transfer processes of 8OHA-T and A-T6OH follow the concerted mechanism, which is different from the stepwise mechanism of A-T. What is more, its energy barrier is lower than the corresponding energy of the latter's first step (rate-determining step).

  • 加载中
    1. [1]

      1. Breen, A. P.; Murphy, J. A. Free Radical Bio. Med., 1995, 18: 1033

    2. [2]

      2. Burrows, C. J.; Muller, J. G. Chem. Rev., 1998, 98: 1109

    3. [3]

      3. Steenken, S.; Novais, H. M. J. Phys. Chem., 1987, 91: 426

    4. [4]

      4. Vieira, A. J. S. C.; Steenken, S. J. Am. Chem. Soc., 1990, 112: 6986

    5. [5]

      5. Steenken, S. Chem. Rev., 1989, 89: 503

    6. [6]

      6. Colson, A. O.; Sevilla, M. D. J. Phys. Chem., 1996, 100: 4420

    7. [7]

      7. Lowdin, P. O. Adv. Quantum Chem., 1965, 2: 213

    8. [8]

      8. Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A. Nature, 1990, 343: 33

    9. [9]

      9. Benderskii, V. A.; Makarov, D. E.;Wight, C. A. Chemical dynamic at low temperature: advances in chemical physics. New York:Wiley& Sons, 1994

    10. [10]

      10. Zhanpeisov, N. U., Leszczynski, J. J. Phys. Chem. A, 1998, 102: 6167

    11. [11]

      11. Truhlar, D. G. Chem. Phys. Lett., 1998, 294: 45

    12. [12]

      12. Floribn, J.; Hrouda, V.; Pave1, H. J. Am. Chem. Soc., 1994, 116: 1457

    13. [13]

      13. rb, L.; Podolyan, Y.; Dziekonski, P.; Sokalski, A.; Leszczynski, J. J. Am. Chem. Soc., 2004, 126: 10119

    14. [14]

      14. Kryachk, E. S.; Sabin, J. R. Int. J. Quantum Chem., 2003, 91: 695

    15. [15]

      15. Villani, G. Chem. Phys., 2005, 316: 1

    16. [16]

      16. Xie, H.; Xia, F.; Cao, Z. J. Phys. Chem. A, 2007, 111: 4384

    17. [17]

      17. Zhang, J. D.; Schaefee III, H. F. J. Chem. Theory Comput., 2007, 3: 115

    18. [18]

      18. Grand, A.; Morell, C.; Labet, V.; Cadet, J.; Eriksson, L. A. J. Phys. Chem. A, 2007, 111: 8968

    19. [19]

      19. Li, L.;Wang, H.; Niu, X. J.; Li, Z. H. Chem. J. Chin. Univ., 2009, 30: 1596

    20. [20]

      [李澜, 王竑, 牛晓娟, 李宗和. 高等学校化 学学报, 2009, 30: 1596]

    21. [21]

      20. Zhang, R. B.; Eriksson, L. A. J. Phys. Chem. B, 2007, 111: 6571

    22. [22]

      21. Hohenberg, P.; Kohn,W. Phys. Rev. B, 1964, 136: 864

    23. [23]

      22. Feller, D. J. Chem. Phys., 1990, 93: 579

    24. [24]

      23. Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    25. [25]

      24. Becke, A. D. J. Chem. Phys., 1993, 98: 5648

    26. [26]

      25. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.03. Pittsburgh, PA: Gaussian Inc., 2003

    27. [27]

      26. Hammond, G. S. J. Am. Chem. Soc., 1955, 77: 334


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    11. [11]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    12. [12]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    13. [13]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    17. [17]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    20. [20]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(1193)
  • Abstract views(3266)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return