Citation: ZHANG Lei-Yong, HE Shui-Jian, CHEN Shui-Liang, GUO Qiao-Hui, HOU Hao-Qing. Preparation and Electrochemical Properties of Polyaniline/Carbon Nanofiber Composite Materials[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3181-3186. doi: 10.3866/PKU.WHXB20101135 shu

Preparation and Electrochemical Properties of Polyaniline/Carbon Nanofiber Composite Materials

  • Received Date: 4 June 2010
    Available Online: 15 October 2010

    Fund Project: 江西师范大学校创新基金(YJS2010059)资助项目 (YJS2010059)

  • Polyaniline/carbon nanofiber (PANI/CNF) composite materials were prepared by in situ polymerization. The functional group, composition, surface morphology, and specific surface area of composite materials were characterized by Fourier transform infrared (FT?IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Brunauer?Emmelt?Teller analysis. Cyclic voltammetry (CV) and galvanotactic charge?discharge methods were used to study the electrochemical properties of the PANI/ CNF composite materials. Results showed that the composite materials had a rough surface with a burry PANI structure that was uniformly distributed over the CNF. The composite materials, as electrodes, showed od reversibility in redox reactions. The specific capacitance of 44.4%(w) PANI/CNF was 587.1 F·g-1, the specific energy was 66.1 Wh·kg-1 at a current density of 100 mA·g-1, and the specific power was 1014.2 W·kg-1 at a current density of 800 mA·g-1. Moreover, the specific capacitance of PANI/CNF only decreased by 28% after 1000 charge?discharge cycles. Therefore, the PANI/CNF composite material is an excellent material for use in supercapacitors because of its high electrical conductivity and large specific capacitance.

  • 加载中
    1. [1]

      1. Hou, H. Q.; Reneker, D. H. Adv. Mater., 2004, 16: 69

    2. [2]

      2. Niu, C.; Sichel, E.; Hoch, R.; Moy, D.; Tennent, H. Appl. Phys. Lett., 1997, 70: 1480

    3. [3]

      3. Guo, Q. H.; Zhou, X. P.; Li, X. Y.; Chen, S. L.; Agarwal, S.; Andreas, G.; Hou, H. Q. J. Mater. Chem., 2009, 19: 2810

    4. [4]

      4. Dong, J, H.; The frontiers and development of macromolecule science (II). Beijing: Science Press, 2009: 624. [董建华. 高分子科学前沿与进展(II). 北京: 科学出版社, 2009, 624]

    5. [5]

      5. Hou, H. Q.; Zeng, J.; Reuning, A.; Schaper, A.;Wendorff, J. H.; Greiner, A. Macromolecules, 2002, 35: 2429

    6. [6]

      6. Jang, J.; Bae, J.; Choi, M.; Yoon, S. H. Carbon, 2005, 43: 2730

    7. [7]

      7. Zhou, Y. K.; He, B. L.; Zhou,W. J.; Huang, J.; Li, X. H.;Wu, B.; Li, H. L. Electrochim. Acta, 2004, 49: 257

    8. [8]

      8. Jiang, Q.; Zhang, Q.; Du, B.; Zhao, X. F.; Zhao, Y. Acta Phys. ? Chim. Sin., 2008, 24: 1719. [江奇, 张倩, 杜冰, 赵晓峰, 赵勇. 物理化学学报, 2008, 24: 1719]

    9. [9]

      9. Lu, H. Preparation and electrochemical capacitive characteristic of polyaniline nanofiber by interfacial polymerization[D]. Changsha: Central South University, 2007. [卢海. 聚苯胺纳米纤维的界面聚合法制备及电化学电容特性研究[D]. 长沙: 中南大学, 2007]

    10. [10]

      10. Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbushire, F. Appl. Phys. Lett., 1999, 75: 1329

    11. [11]

      11. Chen, R. J.; Franklin, N. R.; Kong, J.; Cao, J.; Tombler, T. W.; Zhang, Y. G. Appl. Phys. Lett., 2001, 79: 2258

    12. [12]

      12. Gupta, V.; Miura, N. J. Power Sources, 2006, 157: 616

    13. [13]

      13. Wang, Q. L.; Li, J. L.; Gao, F.; Li,W. S.;Wu, K, Z.;Wang, X. D. New Carbon Mater., 2008, 23: 275

    14. [14]

      14. Zhang, Q. C.; Song, H. H.; Chen, X. H.; Meng, Q. H.; Pang, Z. Z. Chinese Journal of Power Sources, 2007, 32: 109. [张钦仓, 宋怀河, 陈晓红, 孟庆函, 庞自钊. 电源技术, 2007, 32: 109]

    15. [15]

      15. Jang, J.; Lim, B. Angew. Chem.-Int. Edit., 2003, 42: 5600

    16. [16]

      16. Lai, C. L. Preparation and application of carbon nanofibers[D]. Nanchang: Jiangxi Normal University, 2007. [赖垂林. 碳纳米纤维的制备及应用[D]. 南昌: 江西师范大学, 2007]

    17. [17]

      17. Zhou, J. H.; Sui, Z. J.; Zhu, J.; Ping, L.; Chen, D.; Dai,Y. C.;Yuan,W. K. Carbon, 2007, 45: 785

    18. [18]

      18. Wang, Y.W. Preparation and the study of properties of polyaniline/ Ag composite materials[D]. Changsha: Central South University [王炎伟. 聚苯胺/银纳米复合材料的制备及性能研究[D]. 长沙: 中南大学, 2009]

    19. [19]

      19. Tang, J. S.; Jing, X. B.;Wang, B. C.;Wang, F. S. Synth. Met., 1988, 24: 231

    20. [20]

      20. Cong,W. B.; Huang, Z. L.; Zhang, B. H. Electronic Components and Materials, 2007, 26: 65. [丛文博, 黄震雷, 张宝宏. 电子元件与材料, 2007, 26: 65]

    21. [21]

      21. Dong, S. J.; Che, G. L.; Xie,Y.W. Chemicallymodified electrodes. Revised edition. Beijing: Science Press, 2003: 620-634. [董绍俊, 车广礼, 谢远武. 化学修饰电极. 修订版. 北京: 科学出版社, 2003: 620-634]

    22. [22]

      22. Yang, H. S.; Zhou, X.; Zhang, Q.W. Acta Phys. Chim. Sin., 2005,

    23. [23]

      21: 414. [杨红生, 周啸, 张庆武. 物理化学学报, 2005, 21: 414]

    24. [24]

      23. Rajendra, P. K.; Munichandraiah, N. J. Electrochem. Soc., 2002, 149: A1393

    25. [25]

      24. Chen, J.; Huang, K. L.; Liu, S. Q. Chin. J. Inorg.Chem., 2008, 24: 621. [陈洁, 黄可龙, 刘素琴. 无机化学学报, 2008, 24: 621]

    26. [26]

      25. Zang, Y.; Hao, X. G.;Wang, Z. D.; Zhang, Z. L.; Liu, S. B. Acta Phys. Chim. Sin., 2010, 26: 291. [臧洋, 郝晓刚, 王忠德, 张忠林, 刘世斌. 物理化学学报, 2010, 26: 291]

    27. [27]

      26. Zhang, J.; Kong, L. B.;Wang, N.; Luo, Y. C.; Kang, L. Synth. Met., 2009, 159: 260

    28. [28]

      27. Lü, X. M.;Wu, Q. F.; Mi, H. Y.; Zhang, X. G. Acta Phys, Chim. Sin., 2007, 23: 820. [吕新美, 吴全福, 米红宇, 张校刚. 物理化学学报, 2007, 23: 820


  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(1962)
  • Abstract views(4135)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return