Citation: ZHANG Zhi-Yu, SANG Li-Xia, SUN Biao, ZHANG Xiao-Min, MA Chong-Fang. Kinetics and Electrochemical Impedance Properties of TiO2 Nanotube Array Photoelectrode[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2935-2940. doi: 10.3866/PKU.WHXB20101131 shu

Kinetics and Electrochemical Impedance Properties of TiO2 Nanotube Array Photoelectrode

  • Received Date: 1 June 2010
    Available Online: 13 October 2010

    Fund Project: 国家自然科学基金(50806003) (50806003)北京市自然科学基金(3093018)资助项目 (3093018)

  • The 2μm and 650 nm TiO2 nanotube (TNT) arrays were fabricated by sonoelectrochemical anodic oxidation in ethylene glycol (TNT-E) and in aqueous solution (TNT-A) electrolytes at 20 V direct voltage. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the crystal phase and surface morphology of the resulting oxide films. UV-Vis diffuse reflectance spectra (UV-Vis DRS), current-time (I-t) curves, Mott-Schottky plots and electrochemical impedance spectroscopy (EIS) were used to investigate their kinetics properties and their electrochemical impedance behavior. The 2 μm nanotubes of TNT-E can help to harvest more light and provide more surface active sites than the 650 nm nanotubes of TNT-A. We found that TNT-E had stronger light absorption than TNT-A after calcination in air at 500 ℃, but the photocurrent density differences between TNT-E and TNT-A was only about 0.05 mA·cm2 under UV illumination ((365±15) nm). Since the longer TNT-E tubes can increase the charge transport resistance and decrease the concentration of the reactants on the electrode surface, TNT-E needs to overcome a larger energy barrier and it has a low charge carrier density of 5.31×1020cm-3. TNT-A with relatively shorter tubes showed a better kinetics property and had a charge carrier density of 9.86×1020 cm-3.

     

  • 加载中
    1. [1]

      1. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano. Lett., 2005, 5: 191

    2. [2]

      2. Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Nanotechnology, 2006, 17: 1446

    3. [3]

      3. Zhai, X. H.; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. -Chim. Sin., 2010, 26: 663 [翟晓辉,龙绘锦,董江舟, 曹亚安.物理化学学报, 2010, 26: 663]

    4. [4]

      4. Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M. Environ. Sci. Technol., 2005, 39: 3770

    5. [5]

      5. Varghese, O. K.; ng, D.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A. Adv. Mater., 2003, 15: 624

    6. [6]

      6. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett., 2006, 6: 215

    7. [7]

      7. ng, D.; Grimes, C. A.; Varghese, O. K.; Hu,W.; Singh, R. S.; Chen, Z.; Dicky, E. C. J. Mater. Res., 2001, 16: 3331

    8. [8]

      8. Paulose, M.; Mor, G. K.; Varghese, O. K.; Shankar, K.; Grimes, C. A. J. Photochem. Photobio. A, 2006, 178: 8

    9. [9]

      9. Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. J. Catal., 2007, 246: 362

    10. [10]

      10. Liu, Y. B.; Zhou, B. X.; Li, J. H.; Gan, X. J.; Bai, J.; Cai, W. M. Appl. Catal, B, 2009, 92: 326

    11. [11]

      11. Zhang, Z. Y.; Sang, L. X.; Lu, L. P.; Bai, G. M.; Du, C. X.; Ma, C. F. J. Inorg. Mater., 2010, in press [张知宇,桑丽霞,鲁理平, 白广梅,杜春旭, 马重芳.无机材料学报, 2010,印刷中]

    12. [12]

      12. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. Sol. Energy Mater. Sol. Cells, 2006, 90: 2011

    13. [13]

      13. Nowotny, J.; Bak, T.; Nowotny, M. K.; Sheppard, L. R. Int. J. Hydrog. Energy, 2007, 32: 2609

    14. [14]

      14. Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Environ. Sci. Technol., 2007, 41: 4735

    15. [15]

      15. Macak, J. M.; ng, B. G.; Hueppe, M.; Schmuki, P. Adv. Mater., 2007, 19: 3027

    16. [16]

      16. Khan, S. U. M.; Al-Shahry, M.; Ingler Jr., W. B. Science, 2002, 297: 2243

    17. [17]

      17. John, S. E.; Mohapatra, S. K.; Misra, M. Langmuir, 2009, 25: 8240

    18. [18]

      18. Liu, H.; Wu, M.; Wu, H. J.; Sun, F. X.; Zheng, Y.; Li, W. Z. Acta Phys. -Chim. Sin., 2001, 17: 286 [刘鸿,吴鸣,吴合进, 孙福侠,郑云,李文钊.物理化学学报, 2001, 17: 286]


  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    16. [16]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    17. [17]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(1246)
  • Abstract views(2492)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return