Citation: XIONG Zhen-Hu, WANG Lu, ZHOU Jian-Guo, LIU Jian-Ming. Thermodynamics and Kinetics of Adsorption of Diclofenac on Magnetic Multiwalled Carbon Nanotubes in an Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2890-2898. doi: 10.3866/PKU.WHXB20101130 shu

Thermodynamics and Kinetics of Adsorption of Diclofenac on Magnetic Multiwalled Carbon Nanotubes in an Aqueous Solution

  • Received Date: 26 May 2010
    Available Online: 13 October 2010

    Fund Project: 国家自然科学基金(50878138) (50878138)天津市自然科学基金(07JCZDJC01700)资助项目 (07JCZDJC01700)

  • We investigated the adsorption of diclofenac (an anti-inflammatory drug) in aqueous solutions by magnetic multiwalled carbon nanotubes (MWCNTs). The results showed that the amount of adsorbed diclofenac initially increased with magnetic MWCNT dosage and stabilized at a magnetic MWCNT dosage of 0.7 g·L-1. The amount of diclofenac adsorbed by the magnetic MWCNTs was 33.37 mg·g-1 and the removal rate of diclofenac was 98.1%. The removal rate for the diclofenac increased and then decreased with the pH value of solution, but it decreased with the temperature of solution. Kinetic analysis was conducted using pseudo first and second order models. Regression results showed that the adsorption kinetics was more accurately represented by a pseudo second order model. The linear correlation coefficients and standard deviations of the Langmuir and Freundlich isotherms were determined and the results revealed that the Langmuir isothermfit the experimental results well. The calculated thermodynamic parameters were: ΔG0<0 indicating that the adsorption of diclofenac on magnetic MWCNTs was spontaneous, ΔH0<0 indicating that the absorption reaction was exothermic and that low temperatures are favorable for adsorption, and ΔS0>0 indicating that the adsorption process was a entropy enhancing process.

     

  • 加载中
    1. [1]

      1. Zhang, Y. J.; Sven, U. G.; Carmen, G. Chemosphere, 2008, 73: 1151

    2. [2]

      2. Sun, Z.; Schüssler, W.; Seng, M.; Niessner, R.; Knopp, D. Analytica Chimica Acta, 2008, 620: 73

    3. [3]

      3. Alessandra, D. C.; Carmen, S.; Ana, A.; Maria, J. G.; Santia , E.; Márcia, D. Science of the Total Environment, 2009, 407: 3572

    4. [4]

      4. Yu,W. L.; Xiong, Z. H.; Ma, H. J. Acta Scientiae Circumstantiate, 2009, 29: 2070 [于万禄,熊振湖,马华继. 环境科学学报, 2009, 29: 2070]

    5. [5]

      5. Alfred, R.; Shane, A. S.; Detlef, R. U. K. Water Research, 2009, 43: 3787

    6. [6]

      6. Patrick, O.; Bo, P.; Xing, B. S. Environmental Science & Technology, 2009, 43: 9167

    7. [7]

      7. Lu, Y. M.; ng, Q. M.; Liang, J. Acta Physico-Chimica Sinica, 2009, 25: 1697 [卢月美,巩前明,梁吉. 物理化学学报, 2009, 25:1697]

    8. [8]

      8. Pan, B.; Xing, B. S. Environmental Science&Technology, 2008, 42: 9005

    9. [9]

      9. Sheng, G. D.; Li, J. X.; Shao, D. D.; Hu, J.; Chen, C. G.; Chen, Y. X.; Wang, X. G. Journal of Hazardous Materials, 2010, 178: 333

    10. [10]

      10. Chen, J.; Duan, C. F.; Guan, Y. F. Journal of Chromatography B, 2010, 878: 1216

    11. [11]

      11. Noushin, R.; Reza, A.; Nasrin, S.; Abbas, S.; Masud, Y. Analytica Chimica Acta, 2010, 662: 90

    12. [12]

      12. Zhang, Q.; Zhu, M.; Zhang, Q. H.; Li, Y. G.; Wang, H. G. Composites Science and Technology, 2009, 69: 633

    13. [13]

      13. Wang, B.; ng, J. L.; Yang, C. P.; Zeng, G. M.; Zhou,W. Q. China Environmental Science, 2008, 28: 1009 [王彬,龚继来, 杨春平,曾光明, 周雯婧.中国环境科学, 2008, 28: 1009]

    14. [14]

      14. Ye, C.; ng, Q. M.; Lu, F. P.; Liang, J. Separation and Purification Technology, 2007, 58: 2

    15. [15]

      15. Liu, C. Research of diclofenac sodiumsilk fibroin-chitosan sustained-release microsphere [D]. Suzhou: Suzhou University, 2009 [刘纯. 双氯芬酸钠丝素蛋白-壳聚糖缓释微球的研究 [D].苏州: 苏州大学, 2009]

    16. [16]

      16. Chen, M. L.; Zhang, F. J.; Oh, W. C. New Carbon Materials, 2009, 24: 159 [陈明亮,张峰君,吴沅春. 新型炭材料, 2009, 24: 159]

    17. [17]

      17. Kuo, C. Y.; Wu, C. H.; Wu, J. Y. Journal of Colloid and Interface Science, 2008, 327: 308

    18. [18]

      18. Chen, G. C.; Shan, X. Q.; Zhou, Y. Q.; Shen, X.; Huang, H. L.; Khan, S. U. Journal of Hazardous Materials, 2009, 169: 912

    19. [19]

      19. Hideyuki, K.; Tomohiro, M.; Satoshi, K.; Tohru, S.; Kiyohisa, O. Microchemical Journal, 2008, 88: 82

    20. [20]

      20. Zhang, J. B.; Zhou, Q. F.; Liu, W.; Jiang, G. B. Acta Scientiae Circumstantiae, 2009, 29: 1056 [张建斌, 周群芳,刘伟,江桂斌.环境科学学报, 2009, 29: 1056]

    21. [21]

      21. Shahnaz, Q.; Ashley, G.; Yousef, H. Journal of Hazardous Materials, 2009, 169: 318

    22. [22]

      22. Wojciech, P.; Wladyslaw, R.; Anita, P. Advances in Colloid and Interface Science, 2009, 152: 2

    23. [23]

      23. Salama, M. A.; Burk, R. C. Applied Surface Science, 2008, 255: 1975

    24. [24]

      24. Kuo, C. Y.; Wu, C. H.;Wu, J. Y. Journal of Colloid and Interface Science, 2008, 327: 308

    25. [25]

      25. ng, J. L.; Wang, B.; Zeng, G. M.; Yang, C. P.; Niu, C. C.; Niu, Q. Y.; Zhou, W. J.; Liang, Y. Journal of Hazardous Materials, 2009, 164: 1517


  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

Metrics
  • PDF Downloads(3358)
  • Abstract views(4990)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return