Citation: ZHOU Xin-Wen, ZHANG Rong-Hua, SUN Shi-Gang. Magnetic Properties of CoPt Nanorods with Different Structures[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3360-3364. doi: 10.3866/PKU.WHXB20101125 shu

Magnetic Properties of CoPt Nanorods with Different Structures

  • Received Date: 4 June 2010
    Available Online: 8 October 2010

    Fund Project: 国家自然科学基金(20828005, 20833005)资助项目 (20828005, 20833005)

  • We prepared two kinds of CoPt nanorods by galvanic displacement reaction and chemical reduction. One type was solid (CoPt?a) and the other was hollow (CoPt?b). Transmission electron microscopy (TEM) and energy?dispersive X?ray spectroscopy (EDS) were used to characterize the shape and composition of the nanorods. The magnetic properties were measured at 5 and 300 K. The coercivities of the CoPt?a and CoPt?b nanorods were found to be 6.5 and 9.3 A·m-1 at 5 K, respectively. The coercivities decreased to 0 A·m-1 when the temperature was increased to 300 K. The field cooling (FC) and zero field cooling (ZFC) curves indicated that both the CoPt?a and CoPt?b nanorods are superparamagnetic. The blocking temperatures (TB) of CoPt ?a and CoPt ?b are 10.0 and 9.0 K, respectively. The different magnetic properties of the two kinds of CoPt nanorods including coercivity, magnetization, and blocking temperature may be due to their different compositions and structures.

  • 加载中
    1. [1]

      1. Lewis, L. H.; Kim, J.; Barmak, K. Physica B, 2003: 327

    2. [2]

      2. Chen, Q.; Ge, H. L.;Wu, Q.;Wei, G. Y.; Shu, K. Y.; Cui, Y. J.; ang, X. Q. Micronanoelectronic Technology, 2006, 4: 181 陈强, 葛洪良, 吴琼, 卫国英, 舒康颖, 崔玉建, 王新庆. 微纳 子技术, 2006, 4: 181]

    3. [3]

      3. Han, X. F.; Shamaila, S.; Sharif, R.; Chen, J. Y.; Liu, H. R.; Liu, D. P. Adv. Mater., 2009, 4: 4619

    4. [4]

      4. Cortés, M.; G??mez, E.; Vallés, E. Electrochem. Commun., 2010, 12(1): 132

    5. [5]

      5. Du, X. Y.; Naoki, T.; Hou, X. G.;Wang, X. J. Journal of aterials and Metallurgy, 2008, 7(1): 30. [杜雪岩, 户岛直树, 新刚, 王希靖. 材料与冶金学报, 2008, 7(1): 30]

    6. [6]

      6. Li, D. D.; Jiang, J. H.; Jiang, C. H. Metallic Functional aterials, 2009, 16(2): 17. [李东栋, 蒋建华, 姜传海. 金属功能 料, 2009, 16(2): 17]

    7. [7]

      7. Khurshid, H.; Huang, Y. H.; Bonder, M. J.; Hadjipanayis, G. C. J. Magn. Magn. Mater., 2009, 321(4): 277

    8. [8]

      8. Shen, X.; Xu, X.; Jiang, F.; Lv, B.; Tian, B.; Jin, T. Rare Metals, 2007, 26(1): 23

    9. [9]

      9. Tang, R.; Zhang,W.; Li, Y. J. Alloy. Compd., 2010, 496(1-2): 380

    10. [10]

      10. Park, J. I.; Cheon, J. J. Am. Chem. Soc., 2001, 123: 5743

    11. [11]

      11. Choi, J.; Oh, S. J.; Ju, H.; Cheon, J. Nano. Lett., 2005, 5(11): 2179

    12. [12]

      12. Peng, Y.; Cullis, T.; Moebus, G.; Xu, X.; Inkson, B. Nanotechnology, 2007, 18(48): 485704

    13. [13]

      13. Zhang, Z.; Blom, D. A.; Gal, Z.; Thompson, J. R.; Shen, J.; Dai, S. J. Am. Chem. Soc., 2003, 125: 7528

    14. [14]

      14. Vasquez, Y.; Sra, A. K.; Schaak, R. E. J. Am. Chem. Soc., 2005, 127: 12504

    15. [15]

      15. Zhou, X.W.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. J. Nanosci. Nanotechnol., 2009, 9(4): 2392

    16. [16]

      16. Zhou, X.W.; Zhang, R. H.; Zeng, D. M.; Sun, S. G. J. Solid State hem., 2010, 183: 1340

    17. [17]

      17. Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit., 2004, 43: 1540

    18. [18]

      18. Klabunde, K. J. Nanoscale materials in chemistry. New York: illey Interscience, 2001

    19. [19]

      19. Liang, H. P.; Guo, Y. G.; Hu, J. S.; Zhu, C. F.;Wan, L. J.; Bai, C. L. Inorg. Chem., 2005, 44(9): 3013

    20. [20]

      20. Tao, F. F.; Xu, Z. Acta Phys. -Chim. Sin., 2009, 25(5): 977 陶菲菲, 徐正. 物理化学学报, 2009, 25(5): 977]

    21. [21]

      21. Lu, A. H.; Salabas, E. L.; Schüth, F. Angew. Chem. Int. Edit., b>2007, 46: 1222

    22. [22]

      22. Rong, B.; Li, D.; Nandwana, V.; Poudyal, N.; Ding, Y.;Wang, Z. L.; Zeng, H.; Liu, J. P. Adv. Mater., 2006, 18: 2984

    23. [23]

      23. Wang, R. H.; Jiang, J. S.; Hu, M. Acta Phys. -Chim. Sin., 2009, 25(10): 2167. [王润涵, 姜继森, 胡鸣. 物理化学学报, 2009, 25(10): 2167]


  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    15. [15]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(1250)
  • Abstract views(2406)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return