Citation: NG Chun-Li, ZHOU Yi, YAN Li-Cheng, WEN Sheng, ZHENG Gen-Wen. Properties of SPES/PWA/SiO2 Composite Proton Exchange Membranes[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2967-2974. doi: 10.3866/PKU.WHXB20101124 shu

Properties of SPES/PWA/SiO2 Composite Proton Exchange Membranes

  • Received Date: 2 June 2010
    Available Online: 8 October 2010

    Fund Project: 湖北省自然科学基金(2009CDZ016)资助项目 (2009CDZ016)

  • Novel sulfonated poly(ether sulfone) (SPES)/phosphotungstic acid (PWA)/silica organic-inorganic composite membranes for application in direct methanol fuel cells (DMFCs) were prepared by doping SiO2 sol and PWA into SPES matrix. The structure and performance of the obtained membranes were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), etc. Compared with the pure SPES membrane, SiO2 and PWA doping led to higher thermal stabilities, a higher glass transition temperature (Tg), and higher water uptake. At 20℃ and a fuel cell operating temperature of 80℃, the tensile strength of all the composite membranes was lower than that of the SPES membrane. However, even when the content of SiO2 was as high as 20% (w), the composite membrane still possessed a higher strength than a Nafion 112 membrane. The morphology of the composite membranes indicated that SiO2 and PWA were uniformly distributed throughout the SPES matrix, which may facilitate proton transport. The proton conductivity of the composite membrane (SPES-P-S 15%: 15% (w) SiO2 and 6% (w) PWA) reached 0.034 S·cm-1, which was similar to that of the Nafion 112 membrane at room temperature. However, methanol permeation through the SPES-P-S 15% composite membrane decreased dramatically and was only one-seventh that of the Nafion 112 membrane. This excellent selectivity of the SPES/PWA/SiO2 composite membrane points to its potential use as a promising electrolyte for DMFCs.

     

  • 加载中
    1. [1]

      1. Rhee, C. H.; Kim, H. K.; Chang, H.; Lee, J. S. Chem. Mater., 2005, 17: 1691

    2. [2]

      2. Zhang, G. W.; Zhou, Z. T. Membr. Sci. Technol., 2006, 26: 6 [张高文,周震涛. 膜科学与技术, 2006, 26: 6]

    3. [3]

      3. Fu, X. Z.; Li, J.; Lu, C. H.; Liao, D. W. Progress in Chemistry, 2004, 16: 77 [符显珠, 李俊,卢成慧,廖代伟. 化学进展, 2004, 16: 77]

    4. [4]

      4. Deng, H. L.; Li, L.; Xu, L.; Wang, Y. X. Acta Phys. -Chim. Sin., 2007, 23: 1235 [邓会宁,李磊,许莉, 王宇新.物理化学学报, 2007, 23: 1235]

    5. [5]

      5. Hampson, N. A.; Wilars, M. J. J. Power Sources, 1979, 4: 191

    6. [6]

      6. Wasmus, S.; Kuver, A. J. Electroanal. Chem., 1999, 461: 14

    7. [7]

      7. Dimitrova, P.; Friedrich, K. A.; Vogt, B.; Stimming, U. J. Electroanal. Chem., 2002, 532: 75

    8. [8]

      8. Cho, K. Y.; Eom, J. Y.; Jung, H. Y.; Choi, N. S.; Lee, Y. M.; Park, J. K.; Choi, J. H.; Park, K.W.; Sung, Y. E. Electrochim. Acta, 2004, 50: 583

    9. [9]

      9. Silva, V. S.; Mendes, A.; Madeira, L. M.; Nunes, S. P. J. Membr. Sci., 2006, 276: 126

    10. [10]

      10. Yang, S. F.; ng, C. L.; Guan, R.; Zou, H.; Dai, H. Polym. Adv. Technol., 2006, 17: 360

    11. [11]

      11. Yamada, M.; Honma, I. J. Phys. Chem. B, 2004, 108: 5522

    12. [12]

      12. Li, X.; Chen, D.; Xu, D.; Zhao, C.; Wang, Z.; Lu, H.; Na, H. J. Membr. Sci., 2006, 275: 134

    13. [13]

      13. Fu, R. Q.; Julius, D.; Hong, L.; Lee, J. Y. J. Membr. Sci., 2008, 322: 331

    14. [14]

      14. Hasani-Sadrabadi, M. M.; Emami, S. H.; Moaddel, H. J. Power Sources, 2008, 183: 551

    15. [15]

      15. Miyake, N.; Wainright, J. S.; Savinell, R. F. J. Electrochem. Soc., 2001, 148: 898

    16. [16]

      16. Tazi, B.; Savado , O. Electrochim. Acta, 2000, 45: 4329

    17. [17]

      17. Tricoli, V.; Nannetti, F. Electrochim. Acta, 2003, 48: 2625

    18. [18]

      18. Bonnet, B.; Jones, D. J.; Roziere, J.; Tchicaya, L.; Alberti, G.; Casciola, M.; Massinelli, L.; Bauer, B.; Peraio, A.; Ramunni, E. J. New Mater. Electrochem. Syst., 2000, 3: 87

    19. [19]

      19. Jung, D. H.; Cho, S. Y.; Peck, D. H.; Shin, D. R.; Kim, J. S. J. Power Sources, 2003, 118: 205

    20. [20]

      20. Tsai, J. C.; Kuo, J. F.; Chen, C. Y. J. Power Sources, 2007, 174: 103

    21. [21]

      21. Jiang, R.; Kunz, H. R.; Fenton, J. M. J. Membr. Sci., 2006, 272: 116

    22. [22]

      22. Shen, Y.; Xi, J. Y.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q. Acta Chim. Sin., 2007, 65: 1318 [申益,席靖宇, 邱新平,朱文涛,陈立泉. 化学学报, 2007, 65: 1318]

    23. [23]

      23. Wen, S.; ng, C. L.; Tsen, W. C.; Shu, Y. C.; Tsai, F. C. J. Appl. Polym. Sci., 2010, 116: 1491

    24. [24]

      24. Xu, J.; Guan, R.; Yu, J. J.; Dai, H. New Chemical Materials, 2007, 35: 23 [许晶,管蓉, 余建佳,代化.化工新型材料, 2007, 35: 23]

    25. [25]

      25. Smitha, B.; Sridhar, S.; Khan, A. A. J. Polym. Sci. B-Polym. Phys., 2005, 43: 1538

    26. [26]

      26. Dai, H.; Guan, R.; Li, C.; Liu, J. Solid State Ionics, 2007, 178: 339

    27. [27]

      27. Wang, Z.; Ni, H. Z.; Zhao, C. J.; Li, X. F.; Na, H. J. Polym. Sci. B- Polym. Phys., 2006, 44: 1967

    28. [28]

      28. Zheng, G. W.; ng, C. L.;Wen, S.; Zhou, H. B.; Xie, X. L. Acta Phys. -Chim. Sin., 2009, 25: 575 [郑根稳,龚春丽,文胜,周环波,解孝林.物理化学学报, 2009, 25: 575]

    29. [29]

      29. Zheng, G. W.; ng, C. L.;Wen, S.; Xie, X. L. Acta Phys. -Chim. Sin., 2008, 24: 855 [郑根稳, 龚春丽, 文胜,解孝林.物理化学学报, 2008, 24: 855]

    30. [30]

      30. Shu, Y. C.; Chuang, F. S.; Tsen, W. C.; Chow, J. D.; ng, C. L.; Wen, S. J. Appl. Polym. Sci., 2008, 108: 1783


  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(1311)
  • Abstract views(2867)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return