Citation: ZHANG Li-Qun, LI Hao-Ran. Progress of Investigations on Structures and Interactions of Ionic Liquids by Infrared Spectroscopy and Raman Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2877-2889. doi: 10.3866/PKU.WHXB20101123 shu

Progress of Investigations on Structures and Interactions of Ionic Liquids by Infrared Spectroscopy and Raman Spectroscopy

  • Received Date: 26 May 2010
    Available Online: 8 October 2010

    Fund Project: 国家自然科学基金(20773109, 20806065)资助项目 (20773109, 20806065)

  • Experimental methods, theoretical calculations as well as computer simulations are the three most often used approaches to investigate the microscopic properties and interactions of ionic liquids (ILs). The relationship between the structure and properties of ILs, which is the foundation for designing new functional ionic liquids and promoting their applications in cleaner production, are not thoroughly understood. Recently, spectroscopic methods have been developed to study the structures of solutions. Among the various spectroscopic methods, infrared spectroscopy and Raman spectroscopy play important roles in investigations on the structural properties and interactions of ionic liquids. We thus review the applications and progress of these two spectroscopic methods on structural and property studies of pure ionic liquids and ionic liquids/solvent mixtures. Additionally, we address the associated challenges and prospects.

     

  • 加载中
    1. [1]

      1. Brennecke, J. F.; Maginn, E. J. AIChE J., 2001, 47: 2384

    2. [2]

      2. Chiappe, C.; Pieraccini, D. J. Phys. Org. Chem., 2005, 18: 275

    3. [3]

      3. Endres, F.; El Abedin, S. Z. Phys. Chem. Chem. Phys., 2006, 8: 2101

    4. [4]

      4. Seddon, K. R. Green Chem., 2002, 4: G25

    5. [5]

      5. Zhang, S. J.; Yao, X. Q.; Liu, X. M.; Wang, J. Q. Progress in Chemistry, 2009, 21: 2465 [张锁江,姚晓倩, 刘晓敏, 王金泉. 化学进展, 2009, 21: 2465]

    6. [6]

      6. Johnston, K. P.; Meredith, J. C.; Harrison, K. L. Fluid Phase Equilib., 1996, 116: 385

    7. [7]

      7. Padua, A. A. H.; mes, M. F.; Lopes, J. Acc. Chem. Res., 2007, 40: 1087

    8. [8]

      8. Shim, Y.; Jeong, D.; Manjari, S.; Choi, M. Y.; Kim, H. J. Acc. Chem. Res., 2007, 40: 1130

    9. [9]

      9. Lynden-Bell, R. M.; Del Popolo, M. G.; Youngs, T. G. A.; Kohanoff, J.; Hanke, C. G.; Harper, J. B.; Pinilla, C. C. Acc. Chem. Res., 2007, 40: 1138

    10. [10]

      10. Wang, Y.; Jiang,W.; Yan, T.; Voth, G. A. Acc. Chem. Res., 2007, 40: 1193

    11. [11]

      11. Berg, R. W. Monatshefte Fur Chemie, 2007, 138: 1045

    12. [12]

      12. Castner, E. W.; Wishart, J. F.; Shirota, H. Acc. Chem. Res., 2007, 40: 1217

    13. [13]

      13. Iwata, K.; Okajima, H.; Saha, S.; Hamaguchi, H. O. Acc. Chem. Res., 2007, 40: 1174

    14. [14]

      14. Zhai, C. P.; Liu, X. J.; Wang, J. J. Progress in Chemistry, 2009, 21: 1040 [翟翠萍,刘学军,王键吉. 化学进展, 2009, 21: 1040]

    15. [15]

      15. Bankmann, D.; Giernoth, R. Progress in Nuclear Magnetic Resonance Spectroscopy, 2007, 51: 63

    16. [16]

      16. Dieter, K. M.; Dymek, C. J.; Heimer, N. E.; Rovang, J. W.; Wilkes, J. S. J. Am. Chem. Soc. , 1988, 110: 2722

    17. [17]

      17. Katsyuba, S. A.; Dyson, P. J.; Vandyukova, E. E.; Chernova, A. V.; Vidis, A. Helvetica Chimica Acta, 2004, 87: 2556

    18. [18]

      18. Talaty, E. R.; Raja, S.; Storhaug, V. J.; Dolle, A.; Carper, W. R. J. Phys. Chem. B, 2004, 108: 13177

    19. [19]

      19. Heimer, N. E.; Del Sesto, R. E.; Meng, Z. Z.;Wilkes, J. S.; Carper, W. R. J. Mol. Liquids, 2006, 124: 84

    20. [20]

      20. Lassègues, J. C.; Grondin, J.; Cavagnat, D.; Johansson, P. J. Phys. Chem. A, 2009, 113: 6419

    21. [21]

      21. Wulf, A.; Fumino, K.; Ludwig, R. J. Phys. Chem. A, 2010, 114: 685

    22. [22]

      22. Lassègues, J. C.; Grondin, J.; Cavagnat, D.; Johansson, P. J. Phys. Chem. A, 2010, 114: 687

    23. [23]

      23. Cammarata, L.; Kazarian, S. G.; Salter, P. A.;Welton, T. Phys. Chem. Chem. Phys., 2001, 3: 5192

    24. [24]

      24. Danten, Y.; Cabaco, M. I.; Besnard, M. J. Phys. Chem. A, 2009, 113: 2873

    25. [25]

      25. Xu, Z.; Li, H. R.; Wang, C. M. ChemPhysChem, 2006, 7: 2460

    26. [26]

      26. Xu, Z.; Li, H. R.; Wang, C. M.; Pan, H. H.; Han, S. J. J. Chem. Phys., 2006, 124: 244502

    27. [27]

      27. Zhang, R.; Li, H. R.; Lei, Y.; Han, S. J. J. Mol. Struct., 2004, 693: 17

    28. [28]

      28. Xu, Z.; Li, H. R.; Wang, C. M.;Wu, T.; Han, S. J. Chem. Phys. Lett., 2004, 394: 405

    29. [29]

      29. Zhang, L. Q.; Wang, Y.; Xu, Z.; Li, H. R. J. Phys. Chem. B, 2009, 113: 5978

    30. [30]

      30. Gao, Y.; Zhang, L. Q.;Wang, Y.; Li, H. R. J. Phys. Chem. B, 2010, 114: 2828

    31. [31]

      31. Wang, N. N.; Zhang, Q. G.; Wu, F. G.; Li, Q. Z.; Yu, Z. W. J. Phys. Chem. B, 2010, 114: 8689

    32. [32]

      32. Takamuku, T.; Kyoshoin, Y.; Shimomura, T.; Kittaka, S.; Yamaguchi, T. J. Phys. Chem. B, 2009, 113: 10817

    33. [33]

      33. Zhang, Q. G.; Wang, N. N.; Yu, Z. W. J. Phys. Chem. B, 2010, 114: 4747

    34. [34]

      34. Kazarian, S. G.; Briscoe, B. J.; Welton, T. Chem. Commun., 2000: 2047

    35. [35]

      35. Sakellarios, N. I.; Kazarian, S. G. J. Chem. Thermodyn., 2005, 37: 621

    36. [36]

      36. Andanson, J. M.; Jutz, F.; Baiker, A. J. Phys. Chem. B, 2009, 113: 10249

    37. [37]

      37. Andanson, J. M.; Jutz, F.; Baiker, A. J. Phys. Chem. B, 2010, 114: 2111

    38. [38]

      38. Andanson, J. M.; Jutz, F.; Baiker, A. J. Phys. Chem. B, 2009, 113: 114

    39. [39]

      39. Jeon, Y.; Sung, J.; Kim, D.; Seo, C.; Cheong, H.; Ouchi, Y.; Wawa, R.; Hamaguchi, H. O. J. Phys. Chem. B, 2008, 112: 923

    40. [40]

      40. Yokozeki, A.; Kasprzak, D. J.; Shiflett, M. B. Phys. Chem. Chem. Phys., 2007, 9: 5018

    41. [41]

      41. Koddermann, T.;Wertz, C.; Heintz, A.; Ludwig, R. ChemPhysChem, 2006, 7: 1944

    42. [42]

      42. Umebayashi, Y.; Jiang, J. C.; Lin, K. H.; Shan, Y. L.; Fujii, K.; Seki, S.; Ishiguro, S. I.; Lin, S. H.; Chang, H. C. J. Chem. Phys., 2009, 131: 7

    43. [43]

      43. Chang, H. C.; Jiang, J. C.; Chang, C. Y.; Su, J. C.; Hung, C. H.; Liou, Y. C.; Lin, S. H. J. Phys. Chem. B, 2008, 112: 4351

    44. [44]

      44. Chang, H. C.; Jiang, J. C.; Tsai,W. C.; Chen, G. C.; Lin, S. H. J. Phys. Chem. B, 2006, 110: 3302

    45. [45]

      45. Chang, H. C.; Jiang, J. C.; Liou, Y. C.; Hung, C. H.; Lai, T. Y.; Lin, S. H. J. Chem. Phys., 2008, 129: 044506

    46. [46]

      46. Umebayashi, Y.; Jiang, J. C.; Shan, Y. L.; Lin, K. H.; Fujii, K.; Seki, S.; Ishiguro, S. I.; Lin, S. H.; Chang, H. C. J. Chem. Phys., 2009, 130: 124503

    47. [47]

      47. Chen, H.; Zheng, O. Y.; Cooks, R. G. Angew. Chem. Int. Edit., 2006, 45: 3656

    48. [48]

      48. Neto, B. A. D.; Santos, L. S.; Nachtigall, F. M.; Eberlin, M. N.; Dupont, J. Angew. Chem. Int. Edit., 2006, 45: 7251

    49. [49]

      49. Leal, J. P.; Esperanca, J.; da Piedade, M. E. M.; Lopes, J. N. C.; Rebelo, L. P. N.; Seddon, K. R. J. Phys. Chem. A, 2007, 111: 6176

    50. [50]

      50. Akai, N.; Parazs, D.; Kawai, A.; Shibuya, K. J. Phys. Chem. B, 2009, 113: 4756

    51. [51]

      51. Wang, X. H; Tao, G. H.; Wu, X. M.; Kou, Y. Acta Phys. -Chim. Sin., 2005, 21: 528 [王晓化,陶国宏,吴晓牧,寇元.物理化学学报, 2005, 21: 528]

    52. [52]

      52. Koddermann, T.; Wertz, C.; Heintz, A.; Ludwig, R. Angew. Chem. Int. Edit., 2006, 45: 3697

    53. [53]

      53. Katsyuba, S. A.; Zvereva, E. E.; Vidis, A.; Dyson, P. J. J. Phys. Chem. A, 2007, 111: 352

    54. [54]

      54. Hunt, P. A. J. Phys. Chem. B, 2007, 111: 4844

    55. [55]

      55. Noda, I. J. Am. Chem. Soc., 1989, 111: 8116

    56. [56]

      56. Lopez-Pastor, M.; Ayora-Canada, M. J.; Valcarcel, M.; Lendl, B. J. Phys. Chem. B, 2006, 110: 10896

    57. [57]

      57. Zhang, L. Q.; Xu, Z.; Wang, Y.; Li, H. R. J. Phys. Chem. B, 2008, 112: 6411

    58. [58]

      58. Sun, B. J.; Jin, Q.; Tan, L. S.; Wu, P. Y.; Yan, F. J. Phys. Chem. B, 2008, 112: 14251

    59. [59]

      59. Wu, B.; Zhang, Y. M.; Wang, H. P. J. Phys. Chem. B, 2009, 113: 12332

    60. [60]

      60. Tran, C. D.; Lacerda, S. H. D.; Oliveira, D. Appl. Spectrosc., 2003, 57: 152

    61. [61]

      61. Fumino, K.;Wulf, A.; Ludwig, R. Angew. Chem. Int. Edit., 2008, 47: 3830

    62. [62]

      62. Fumino, K.;Wulf, A.; Ludwig, R. Angew. Chem. Int. Edit., 2008, 47: 8731

    63. [63]

      63. Fumino, K.;Wulf, A.; Ludwig, R. Phys. Chem. Chem. Phys., 2009, 11: 8790

    64. [64]

      64. Fumino, K.;Wulf, A.; Ludwig, R. Angew. Chem. Int. Edit., 2009, 48: 3184

    65. [65]

      65. Fumino, K.;Wulf, A.; Verevkin, S. P.; Heintz, A.; Ludwig, R. ChemPhysChem, 2010, 11: 1623

    66. [66]

      66. Koddermann, T.; Fumino, K.; Ludwig, R.; Lopes, J. N. C.; Padua, A. A. H. ChemPhysChem, 2009, 10: 1181

    67. [67]

      67. Dominguez-Vidal, A.; Kaun, N.; Ayora-Canada, M. J.; Lendl, B. J. Phys. Chem. B, 2007, 111: 4446

    68. [68]

      68. Buffeteau, T.; Grondin, J.; Lassegues, J. C. Appl. Spectrosc., 2010, 64: 112

    69. [69]

      69. Liu, Y.; ng, X. D.;Wang, G. X.;Wang, L. J.; Xiao, H. M. Chin. J. Chem., 2010, 28: 149

    70. [70]

      70. Kiefer, J.; Obert, K.; Bömann, A.; Seeger, T.;Wasserscheid, P.; Leipertz, A. ChemPhysChem, 2008, 9: 1317

    71. [71]

      71. Wu, Y.; Zhang, T. T.; Yu, N. Acta Phys. -Chim. Sin., 2009, 25: 1689 [吴阳,张甜甜,于宁.物理化学学报., 2009, 25: 1689]

    72. [72]

      72. Wulf, A.; Fumino, K.; Ludwig, R. Angew. Chem. Int. Edit., 2010, 49: 449

    73. [73]

      73. Umebayashi, Y.; Mitsugi, T.; Fujii, K.; Seki, S.; Chiba, K.; Yamamoto, H.; Lopes, J. N. C.; Padua, A. A. H.; Takeuchi, M.; Kanzaki, R.; Ishiguro, S. J. Phys. Chem. B, 2009, 113: 4338

    74. [74]

      74. Katayanagi, H.; Hayashi, S.; Hamaguchi, H. O.; Nishikawa, K. Chem. Phys. Lett., 2004, 392: 460

    75. [75]

      75. Holomb, R.; Martinelli, A.; Albinsson, I.; Lassegues, J. C.; Johansson, P.; Jacobsson, P. J. Raman Spectrosc., 2008, 39: 793

    76. [76]

      76. Berg, R. W.; Deetlefs, M.; Seddon, K. R.; Shim, I.; Thompson, J. M. J. Phys. Chem. B, 2005, 109: 19018

    77. [77]

      77. Fujii, K.; Fujimori, T.; Takamuku, T.; Kanzaki, R.; Umebayashi, Y.; Ishiguro, S. I. J. Phys. Chem. B, 2006, 110: 8179

    78. [78]

      78. Jeon, Y.; Sung, J.; Seo, C.; Lim, H.; Cheong, H.; Kang, M.; Moon, B.; Ouchi, Y.; Kim, D. J. Phys. Chem. B, 2008, 112: 4735

    79. [79]

      79. Berg, R. W.; Riisager, A.; Van Buu, O. N.; Fehrmann, R.; Harris, P.; Tomaszowska, A. A.; Seddon, K. R. J. Phys. Chem. B, 2009, 113: 8878

    80. [80]

      80. Herstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L.; Lassegues, J. C. J. Raman Spectrosc., 2005, 36: 762

    81. [81]

      81. Umebayashi, Y.; Fujimori, T.; Sukizaki, T.; Asada, M.; Fujii, K.; Kanzaki, R.; Ishiguro, S. J. Phys. Chem. A, 2005, 109: 8976

    82. [82]

      82. Saha, S.; Hamaguchi, H. O. J. Phys. Chem. B, 2006, 110: 2777

    83. [83]

      83. Berg, R. W.; Riisager, A.; Fehrmann, R. J. Phys. Chem. A, 2008, 112: 8585

    84. [84]

      84. Fazio, B.; Triolo, A.; Di Marco, G. J. Raman Spectrosc., 2008, 39: 233

    85. [85]

      85. (a) Kimura, Y.; Fukuda, M.; Fujisawa, T.; Terazima, M. Chem. Lett., 2005, 34: 338 (b) Fujisawa, T.; Fukuda, M.; Terazima, M.; Kimura, Y. J. Phys. Chem. A, 2006, 110: 6164

    86. [86]

      86. Iwata, K.; Yoshida, K.; Takada, Y.; Hamaguchi, H. Chem. Lett., 2007, 36: 504

    87. [87]

      87. Schafer, T.; Di Paolo, R. E.; Franco, R.; Crespo, J. G. Chem. Commun., 2005: 2594

    88. [88]

      88. Sitze, M. S.; Schreiter, E. R.; Patterson, E. V.; Freeman, R. G. Inorg. Chem., 2001, 40: 2298

    89. [89]

      89. Alves, M. B.; Santos, V. O.; Soares, V. C. D.; Suarez, P. A. Z.; Rubim, J. C. J. Raman Spectrosc., 2008, 39: 1388

    90. [90]

      90. Hardwick, L. J.; Holzapfel, M.; Wokaun, A.; Novak, P. J. Raman Spectrosc., 2007, 38 :110

    91. [91]

      91. Castriota, M.; Caruso, T.; A stino, R. G.; Cazzanelli, E.; Henderson, W. A.; Passerini, S. J. Phys. Chem. A, 2005, 109: 92

    92. [92]

      92. Umebayashi, Y.; Mitsugi, T.; Fukuda, S.; Fujimori, T.; Fujii, K.; Kanzaki, R.; Takeuchi, M.; Ishiguro, S. I. J. Phys. Chem. B, 2007, 111: 13028

    93. [93]

      93. Monteiro, M. J.; Bazito, F. F. C.; Siqueira, L. J. A.; Ribeiro, M. C. C.; Torresi, R. M. J. Phys. Chem. B, 2008, 112: 2102

    94. [94]

      94. Johansson, P.; Beranger, S.; Armand, M.; Nilsson, H.; Jacobsson, P. Solid State Ionics, 2003, 156: 129

    95. [95]

      95. Scheers, J.; Johansson, P.; Jacobsson, P. J. Electrochem. Soc., 2008, 155: A628

    96. [96]

      96. Gao, Y. N.; Li, N.; Li, X.W.; Zhang, S. H.; Zheng, L. Q.; Bai, X. T.; Yu, L. J. Phys. Chem. B, 2009, 113: 123

    97. [97]

      97. rdon, P. G.; Brouwer, D. H.; Ripmeester, J. A. ChemPhysChem, 2010, 11: 260

    98. [98]

      98. Lei, S.; Zhang, J.; Huang, J. B. Acta Phys. -Chim. Sin., 2007, 23: 1657 [雷声, 张晶,黄建滨.物理化学学报, 2007, 23: 1657]

    99. [99]

      99. Lungwitz, R.; Spange, S. New J. Chem., 2008, 32: 392

    100. [100]

      100. Schroder, U.; Wadhawan, J. D.; Compton, R. G.; Marken, F.; Suarez, P. A. Z.; Consorti, C. S.; de Souza, R. F.; Dupont, J. New J. Chem., 2000, 24: 1009

    101. [101]

      101. Strehmel, V.; Laschewsky, A.; Stoesser, R.; Zehl, A.; Herrmann, W. J. Phys. Org. Chem., 2006, 19: 318

    102. [102]

      102. Tao, G. H.; Zou, M.; Wang, X. H.; Chen, Z. Y.; Evans, D. G.; Kou, Y. Aust. J. Chem., 2005, 58: 327

    103. [103]

      103. Wang, X. L.; Wan, H.; Guan, G. F. Acta Phys. -Chim. Sin., 2008, 24: 2077 [王小露,万辉, 管国锋.物理化学学报, 2008, 24: 2077]

    104. [104]

      104. Wu, B.; Liu, Y.; Zhang, Y. M.; Wang, H. P. Chem. Eur. J., 2009, 15: 6889

    105. [105]

      105. Wu, Q.; Han, M. H.; Xin, H. L.; Dong, B. Q.; Jin, Y. Spectroscopy and Spectral Analysis, 2008, 28: 282

    106. [106]

      106. Zou, Y.; Xu, H. J.; Wu, G. Z.; Jiang, Z.; Chen, S. M.; Huang, Y. Y.; Huang,W.; Wei, X. J. J. Phys. Chem. B, 2009, 113: 2066

    107. [107]

      107. Wang, Y.; Li, H. R.; Han, S. J. J. Chem. Phys., 2005, 123: 174501

    108. [108]

      108. Wang, Y.; Li, H. R.; Han, S. J. J. Phys. Chem. B, 2006, 110: 24646

    109. [109]

      109. Wang, Y.;Wang, C. M.; Zhang, L. Q.; Li, H. R. Phys. Chem. Chem. Phys., 2008, 10: 5976

    110. [110]

      110. Nanbu, N.; Sasaki, Y.; Kitamura, F. Electrochem. Commun., 2003, 5: 383


  • 加载中
    1. [1]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    6. [6]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    7. [7]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(2229)
  • Abstract views(6067)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return