Citation: ZHAN Yong- ng, CHEN Qi-Yuan, YIN Zhou-Lan, LI Li-Li, CAI Bing-Xin. Synthesis, Characterization and Surface Functionalization of Novel Spindle-Like α-Fe2O3 Nanocrystals[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3113-3119. doi: 10.3866/PKU.WHXB20101119
-
We synthesized novel α-Fe2O3 nanocrystals (NFO-1) with single crystalline structure. In our synthetic strategy, the morphology and structure can be controlled simultaneously by the choice of inorganic salt (IS) and organic template (OT) in the extremely low precursor concentration reaction system. The evaporation-induced self-assembly (EISA) method was used to accelerate the reaction and to recover the synthesized α-Fe2O3 with high yields while preserving its favorable shape and structure. The morphologies and structures of the obtained α-Fe2O3 nanocrystals greatly influence their surface functionalization capability. The chemical interaction between NFO-1 and the surface functionalization agent (dopamine) was obviously enhanced because of its special spindle-likemorphology. The synthesis method described in this paper is suitable for the synthesis of other transition metal oxide single nanocrystals as well and we expect that this new route will be useful for the synthesis of novel nanomaterials.
-
-
[1]
1. Lin, Y.;Wu, S.; Hung, Y.; Chou, Y.; Chang, C.; Lin, M.; Tsai, C.; Mou, C. Chem. Mater., 2006, 18: 5170
-
[2]
2. Yada, M.; Ohya, M.; Machida, M.; Kijima, T. Langmuir, 2000, 16: 4752
-
[3]
3. Nelson, P.; Elliott, J. M.; Attard, G. S.; Owen, J. R. Chem. Mater., 2002, 14: 524
-
[4]
4. Teng, X.; Han, W.; Ku, W.; Hücker, M. Angew. Chem. Int. Edit., 2008, 47: 2055
-
[5]
5. Srivastava, D. N.; Perkas, N.; Gedanken, A.; Felner, I. J. Phys. Chem. B, 2002, 106: 1878
-
[6]
6. Jiao, F.; Bruce, P. G. Angew. Chem. Int. Edit., 2004, 43: 5958
-
[7]
7. Jiao, F.; Jumas, J. C.; Womes, M.; Chadwick, A. V.; Harrison, A.; Bruce, P. G. J. Am. Chem. Soc., 2006, 128: 12905
-
[8]
8. Epling,W. S.; Hoflund, G. B.; Weaver, J. F.; Tsubota, S.; Haruta, M. J. Phys. Chem., 1996, 100: 9929
-
[9]
9. Pickard, J. M.; Jones, E. G. Energy&Fuels, 1997, 11: 1232
-
[10]
10. Lai, J.; Shafi, K. V. P. M.; Loos, K.; Ulman, A.; Lee, Y.; Vogt, T.; Estournès, C. J. Am. Chem. Soc., 2003, 125: 11470
-
[11]
11. Wu, C.; Yin, P.; Zhu, X.; Ouyang, C.; Xie, Y. J. Phys. Chem. B, 2006, 110: 17806
-
[12]
12. Tang, B.; Wang, G.; Zhuo, L.; Ge, J.; Cui, L. Inorg. Chem., 2006, 45: 5196
-
[13]
13. Yamada, K.; Mukaihata, N.; Kawahara, T.; Tada, H. Langmuir, 2007, 23: 8593
-
[14]
14. Zhong, Z.; Ho, J.; Teo, J.; Shen, S.; Gedanken, A. Chem. Mater., 2007, 19: 4776
-
[15]
15. Han, L.; Shan, Z.; Chen, D.; Yu, X.; Yang, P.; Tu, B.; Zhao, D. J. Colloid Interface Sci., 2008, 318: 315
-
[16]
16. Kenning, G. G.; Rodriguez, R.; Zotev, V. S.; Moslemi, A.; Wilson, S.; Hawel, L.; Byus, C.; Kovach, J. S. Rev. Sci. Instrum., 2005, 76: 014303
-
[17]
17. Perez, J. M.; Simeone, F. J.; Saeki, Y.; Josephson, L.; Weissleder, R. J. Am. Chem. Soc., 2003, 125: 10192
-
[18]
18. Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter, E. E. J. Am. Chem. Soc., 2007, 129: 2482
-
[19]
19. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc.,1999, 121: 11595
-
[20]
20. Woo, K.; Lee, H. J.; Ahn, J. P.; Park, Y. S. Adv. Mater., 2003, 15: 1761
-
[21]
21. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Nature, 2005, 437: 121
-
[22]
22. Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Angew. Chem. Int. Edit., 2005, 44: 2782
-
[23]
23. Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. Adv. Mater., 2005, 17: 2320
-
[24]
24. Jia, C.; Sun, L.; Yan, Z.; You, L.; Luo, F.; Han, X.; Pang, Y.; Zhang, Z.; Yan, C. Angew. Chem. Int. Edit., 2005, 44: 4328
-
[25]
25. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S.; Li, G. J. Am. Chem. Soc., 2004, 126: 273
-
[26]
26. Jia, C.; Sun, L.; Luo, F.; Han, X.; Heyderman, L.; Yan, Z.; Yan, C.; Zheng, K.; Zhang, Z.; Takano, M.; Hayashi, N.; Eltschka, M.; Kläui, M.; Rüdiger, U.; Kasama, T.; Cervera- ntard, L.; Dunin- Borkowski, R. E.; Tzvetkov, G.; Raabe, J. J. Am. Chem. Soc., 2008, 130: 16968
-
[27]
27. Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature, 1999, 398: 223
-
[28]
28. Wu, Y.; Cheng, G.; Katsov, K.; Sides, S. W.; Wang, J.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Nature Mater., 2004, 3: 816
-
[29]
29. Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Nature, 2004, 429: 281
-
[30]
30. Koganti, V. R.; Dunphy, D.; wrishankar, V.; McGehee, M. D.; Li, X.; Wang, J.; Rankin, S. E. Nano Lett., 2006, 6: 2567
-
[31]
31. Zhang, A.; Zhang, Y.; Xing, N.; Hou, K.; Guo, X. Chem. Mater., 2009, 21: 4122
-
[32]
32. Bieniecki, A.;Wilk, K. A.; Gapi俳ski, K. J. Phys. Chem. B, 1997, 101: 871
-
[33]
33. Zhang, Y.; Raman, N.; Bailey, J. K.; Brinker, C. J.; Crooks, R. M. J. Phys. Chem., 1992, 96: 9098
-
[34]
34. Yang, P.; Zhao, D.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature, 1998, 396: 152
-
[35]
35. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater., 1999, 11: 579
-
[36]
36. Yang, P.; Zhao, D.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Chem. Mater., 1999, 11: 2813
-
[37]
37. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F. Chem. Mater., 2002, 14: 3284
-
[38]
38. Bartl, M. H.; Puls, S. P.; Tang, J.; Lichtenegger, H. C.; Stucky, G. D. Angew. Chem., Int. Edit., 2004, 43: 3037
-
[39]
39. Jiang, X.; Brinker, C. J. J. Am. Chem. Soc., 2006, 128: 4512
-
[40]
40. Pang, J.; Xiong, S.; Jaeckel, F.; Sun, Z.; Dunphy, D.; Brinker, C. J. J. Am. Chem. Soc., 2008, 130: 3284
-
[41]
41. Zhan, Y.; Cai, B.; Wang, B.; Huang, X.; Zhang, P.; Li, L.; Wu, Z.; Yin, Z.; Chen, Q. J. Mater. Chem., 2008, 18: 5967
-
[42]
42. Li, Y.; Ge, X.; Zhang, Z.; Ye, Q. Chem. Mater., 2002, 14: 1048
-
[43]
43. Brezesinski, T.; Groenewolt, M.; Antonietti, M.; Smarsly, B. Angew. Chem., Int. Edit., 2006, 45: 781
-
[44]
44. Li, S.; Zhang, H.; Wu, J.; Ma, X.; Yang, D. Cryst. Growth Des., 2006, 6: 351
-
[45]
45. Chen, M.; Liu, J.; Sun, S. J. Am. Chem. Soc., 2004, 126: 1950
-
[46]
46. Cao, M.; Liu, T.; Gao, S.; Sun, G.; Wu, X.; Hu, C.; Wang, Z. Angew. Chem. Int. Edit., 2005, 44: 4197
-
[47]
47. Cao, H.; Wang, G.; Zhang, L.; Liang, Y.; Zhang, S.; Zhang, X. ChemPhyChem, 2006, 7: 1897
-
[48]
48. Zhang, P.; Zhan, Y.; Cai, B.; Hao, C.; Wang, J.; Liu, C.; Meng, Z.; Yin, Z.; Chen, Q. Nano Res., 2010, 3: 235
-
[49]
49. Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo, Z.; Xu, B. J. Am. Chem. Soc., 2004, 126: 9938
-
[1]
-
-
[1]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[2]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[3]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[4]
Yuqiao Zhou , Weidi Cao , Shunxi Dong , Lili Lin , Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003
-
[5]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[6]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[7]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[8]
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
-
[9]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[10]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[11]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[12]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[13]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[14]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[15]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[16]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[17]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[18]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[19]
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
-
[20]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[1]
Metrics
- PDF Downloads(1290)
- Abstract views(2449)
- HTML views(5)