Citation: ZHAN Yong- ng, CHEN Qi-Yuan, YIN Zhou-Lan, LI Li-Li, CAI Bing-Xin. Synthesis, Characterization and Surface Functionalization of Novel Spindle-Like α-Fe2O3 Nanocrystals[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3113-3119. doi: 10.3866/PKU.WHXB20101119 shu

Synthesis, Characterization and Surface Functionalization of Novel Spindle-Like α-Fe2O3 Nanocrystals

  • Received Date: 9 July 2010
    Available Online: 24 September 2010

    Fund Project: 科技支撑计划重点课题(2006BAE02B05) (2006BAE02B05)国家重点基础研究发展规划项目(973) (2005CB221406)资助 (973) (2005CB221406)

  • We synthesized novel α-Fe2O3 nanocrystals (NFO-1) with single crystalline structure. In our synthetic strategy, the morphology and structure can be controlled simultaneously by the choice of inorganic salt (IS) and organic template (OT) in the extremely low precursor concentration reaction system. The evaporation-induced self-assembly (EISA) method was used to accelerate the reaction and to recover the synthesized α-Fe2O3 with high yields while preserving its favorable shape and structure. The morphologies and structures of the obtained α-Fe2O3 nanocrystals greatly influence their surface functionalization capability. The chemical interaction between NFO-1 and the surface functionalization agent (dopamine) was obviously enhanced because of its special spindle-likemorphology. The synthesis method described in this paper is suitable for the synthesis of other transition metal oxide single nanocrystals as well and we expect that this new route will be useful for the synthesis of novel nanomaterials.

     

  • 加载中
    1. [1]

      1. Lin, Y.;Wu, S.; Hung, Y.; Chou, Y.; Chang, C.; Lin, M.; Tsai, C.; Mou, C. Chem. Mater., 2006, 18: 5170

    2. [2]

      2. Yada, M.; Ohya, M.; Machida, M.; Kijima, T. Langmuir, 2000, 16: 4752

    3. [3]

      3. Nelson, P.; Elliott, J. M.; Attard, G. S.; Owen, J. R. Chem. Mater., 2002, 14: 524

    4. [4]

      4. Teng, X.; Han, W.; Ku, W.; Hücker, M. Angew. Chem. Int. Edit., 2008, 47: 2055

    5. [5]

      5. Srivastava, D. N.; Perkas, N.; Gedanken, A.; Felner, I. J. Phys. Chem. B, 2002, 106: 1878

    6. [6]

      6. Jiao, F.; Bruce, P. G. Angew. Chem. Int. Edit., 2004, 43: 5958

    7. [7]

      7. Jiao, F.; Jumas, J. C.; Womes, M.; Chadwick, A. V.; Harrison, A.; Bruce, P. G. J. Am. Chem. Soc., 2006, 128: 12905

    8. [8]

      8. Epling,W. S.; Hoflund, G. B.; Weaver, J. F.; Tsubota, S.; Haruta, M. J. Phys. Chem., 1996, 100: 9929

    9. [9]

      9. Pickard, J. M.; Jones, E. G. Energy&Fuels, 1997, 11: 1232

    10. [10]

      10. Lai, J.; Shafi, K. V. P. M.; Loos, K.; Ulman, A.; Lee, Y.; Vogt, T.; Estournès, C. J. Am. Chem. Soc., 2003, 125: 11470

    11. [11]

      11. Wu, C.; Yin, P.; Zhu, X.; Ouyang, C.; Xie, Y. J. Phys. Chem. B, 2006, 110: 17806

    12. [12]

      12. Tang, B.; Wang, G.; Zhuo, L.; Ge, J.; Cui, L. Inorg. Chem., 2006, 45: 5196

    13. [13]

      13. Yamada, K.; Mukaihata, N.; Kawahara, T.; Tada, H. Langmuir, 2007, 23: 8593

    14. [14]

      14. Zhong, Z.; Ho, J.; Teo, J.; Shen, S.; Gedanken, A. Chem. Mater., 2007, 19: 4776

    15. [15]

      15. Han, L.; Shan, Z.; Chen, D.; Yu, X.; Yang, P.; Tu, B.; Zhao, D. J. Colloid Interface Sci., 2008, 318: 315

    16. [16]

      16. Kenning, G. G.; Rodriguez, R.; Zotev, V. S.; Moslemi, A.; Wilson, S.; Hawel, L.; Byus, C.; Kovach, J. S. Rev. Sci. Instrum., 2005, 76: 014303

    17. [17]

      17. Perez, J. M.; Simeone, F. J.; Saeki, Y.; Josephson, L.; Weissleder, R. J. Am. Chem. Soc., 2003, 125: 10192

    18. [18]

      18. Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter, E. E. J. Am. Chem. Soc., 2007, 129: 2482

    19. [19]

      19. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc.,1999, 121: 11595

    20. [20]

      20. Woo, K.; Lee, H. J.; Ahn, J. P.; Park, Y. S. Adv. Mater., 2003, 15: 1761

    21. [21]

      21. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Nature, 2005, 437: 121

    22. [22]

      22. Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Angew. Chem. Int. Edit., 2005, 44: 2782

    23. [23]

      23. Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. Adv. Mater., 2005, 17: 2320

    24. [24]

      24. Jia, C.; Sun, L.; Yan, Z.; You, L.; Luo, F.; Han, X.; Pang, Y.; Zhang, Z.; Yan, C. Angew. Chem. Int. Edit., 2005, 44: 4328

    25. [25]

      25. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S.; Li, G. J. Am. Chem. Soc., 2004, 126: 273

    26. [26]

      26. Jia, C.; Sun, L.; Luo, F.; Han, X.; Heyderman, L.; Yan, Z.; Yan, C.; Zheng, K.; Zhang, Z.; Takano, M.; Hayashi, N.; Eltschka, M.; Kläui, M.; Rüdiger, U.; Kasama, T.; Cervera- ntard, L.; Dunin- Borkowski, R. E.; Tzvetkov, G.; Raabe, J. J. Am. Chem. Soc., 2008, 130: 16968

    27. [27]

      27. Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature, 1999, 398: 223

    28. [28]

      28. Wu, Y.; Cheng, G.; Katsov, K.; Sides, S. W.; Wang, J.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Nature Mater., 2004, 3: 816

    29. [29]

      29. Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Nature, 2004, 429: 281

    30. [30]

      30. Koganti, V. R.; Dunphy, D.; wrishankar, V.; McGehee, M. D.; Li, X.; Wang, J.; Rankin, S. E. Nano Lett., 2006, 6: 2567

    31. [31]

      31. Zhang, A.; Zhang, Y.; Xing, N.; Hou, K.; Guo, X. Chem. Mater., 2009, 21: 4122

    32. [32]

      32. Bieniecki, A.;Wilk, K. A.; Gapi俳ski, K. J. Phys. Chem. B, 1997, 101: 871

    33. [33]

      33. Zhang, Y.; Raman, N.; Bailey, J. K.; Brinker, C. J.; Crooks, R. M. J. Phys. Chem., 1992, 96: 9098

    34. [34]

      34. Yang, P.; Zhao, D.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature, 1998, 396: 152

    35. [35]

      35. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater., 1999, 11: 579

    36. [36]

      36. Yang, P.; Zhao, D.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Chem. Mater., 1999, 11: 2813

    37. [37]

      37. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F. Chem. Mater., 2002, 14: 3284

    38. [38]

      38. Bartl, M. H.; Puls, S. P.; Tang, J.; Lichtenegger, H. C.; Stucky, G. D. Angew. Chem., Int. Edit., 2004, 43: 3037

    39. [39]

      39. Jiang, X.; Brinker, C. J. J. Am. Chem. Soc., 2006, 128: 4512

    40. [40]

      40. Pang, J.; Xiong, S.; Jaeckel, F.; Sun, Z.; Dunphy, D.; Brinker, C. J. J. Am. Chem. Soc., 2008, 130: 3284

    41. [41]

      41. Zhan, Y.; Cai, B.; Wang, B.; Huang, X.; Zhang, P.; Li, L.; Wu, Z.; Yin, Z.; Chen, Q. J. Mater. Chem., 2008, 18: 5967

    42. [42]

      42. Li, Y.; Ge, X.; Zhang, Z.; Ye, Q. Chem. Mater., 2002, 14: 1048

    43. [43]

      43. Brezesinski, T.; Groenewolt, M.; Antonietti, M.; Smarsly, B. Angew. Chem., Int. Edit., 2006, 45: 781

    44. [44]

      44. Li, S.; Zhang, H.; Wu, J.; Ma, X.; Yang, D. Cryst. Growth Des., 2006, 6: 351

    45. [45]

      45. Chen, M.; Liu, J.; Sun, S. J. Am. Chem. Soc., 2004, 126: 1950

    46. [46]

      46. Cao, M.; Liu, T.; Gao, S.; Sun, G.; Wu, X.; Hu, C.; Wang, Z. Angew. Chem. Int. Edit., 2005, 44: 4197

    47. [47]

      47. Cao, H.; Wang, G.; Zhang, L.; Liang, Y.; Zhang, S.; Zhang, X. ChemPhyChem, 2006, 7: 1897

    48. [48]

      48. Zhang, P.; Zhan, Y.; Cai, B.; Hao, C.; Wang, J.; Liu, C.; Meng, Z.; Yin, Z.; Chen, Q. Nano Res., 2010, 3: 235

    49. [49]

      49. Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo, Z.; Xu, B. J. Am. Chem. Soc., 2004, 126: 9938


  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    8. [8]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    14. [14]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(1290)
  • Abstract views(2450)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return