Citation: MENG Gen, KONG De-Jin, QI Xiao-Lan, XU Zhong-Qiang. Carbon Deposition on a Toluene Disproportionation and Transalkylation Catalyst[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3017-3022. doi: 10.3866/PKU.WHXB20101118 shu

Carbon Deposition on a Toluene Disproportionation and Transalkylation Catalyst

  • Received Date: 22 April 2010
    Available Online: 24 September 2010

    Fund Project: 上海市科委科技攻关项目(08521101900)资助 (08521101900)

  • The nature of carbon deposition on a toluene disproportionation and transalkylation catalyst was characterized using thermogravimetry and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption and NH3-temperature programmed desorption (NH3-TPD). Result showed that the kinetics of hard coke combustion approximately fitted a first order reaction with respect to the amount of coke and, therefore, most of the coke existed in a monolayer state and the corresponding apparent activation energy was about 110 kJ·mol-1. There were three kinds of carbon species on the surface of the Cat-1000 catalyst, which presented the catalyst after 1000 h reaction. The C atom fractions in the presence of C—O, C=O, and —C—C— were 22.7%, 9.1%, 68.1%, respectively. The formed carbon species on the Cat-1000 catalyst surface was mostly a graphite structure. The results showed that three quarters of the total carbon deposition on Cat-1000 was hard coke and the rest was soft coke. The specific surface area of the Cat-1000 catalyst decreased obviously compared with the catalyst without reaction (Cat-0). The Cat-1000 had almost unchanged acid intensity as well as high activity and stability. This shows that the cokes mainly deposit on the binder.

     

  • 加载中
    1. [1]

      1. Chen, Q. L.; Kong, D. J.; Yang, W. S. Petrochemical Technology, 2004, 33(10): 909 [陈庆龄,孔德金,杨卫胜.石油化工, 2004, 33(10): 909]

    2. [2]

      2. Cheng, W. C.; Kong, D. J.; Yang, D. Q.; Fu, P. A.; Chen, F. C.; Wang, L. Petrochemical Technology, 1999, 28(2): 107 [程文才, 孔德金,杨德琴, 符盼安,陈凤池,王磊. 石油化工, 1999, 28 (2): 107]

    3. [3]

      3. Bao, Y. Z.; Yang, D. Q.; Qi, X. L.; Kong, D. J. Chemical Reaction Engineering and Technology, 2007, 23(1): 79 [鲍永忠, 杨德琴, 祁晓岚,孔德金. 化学反应工程与工艺, 2007, 23(1): 79]

    4. [4]

      4. Li, B. J.; Leng, J. C.; Wei, J. S.; Shi, B. Q.; Guo, H. L.; Kong, D. J. Chemical Reaction Engineering and Technology, 2006, 22(3): 271 [李保军,冷家厂, 魏劲松, 时宝崎,郭宏利,孔德金. 化学反应工程与工艺, 2006, 22(3): 271]

    5. [5]

      5. Stöcker, M. Microporous Mesoporous Mater., 2005, 82(1-3): 257

    6. [6]

      6. Bhatia, S.; Beltramini, J.; Do, D. D. Cat. Rev.-Sci. Eng., 1989, 31 (4): 431

    7. [7]

      7. Niu, F. H.; Hofmann, H. Appl. Catal. A, 1995, 128 : 107

    8. [8]

      8. Xie, Z. K. Synthesis of βzeolite and toluene disproportionation and C9 aromatics transalkylation reation[D]. Shanghai: East China University of Science and Technology, 2009 [谢在库. β沸石合成和甲苯歧化与C9芳烃烷基转移反应过程研究[D].上海: 华东理工大学, 2009]

    9. [9]

      9. Tsai, T. C.; Chen,W. H.; Lai, C. S.; Liu, S. B.; Wang, I.; Ku, C. S. Catal. Today, 2004, 97: 297

    10. [10]

      10. Han, C. W.; Han, S. H.; Wang,W. T. Petrochemical Technology, 2004, 33(1): 9 [韩崇文,韩书红,王文婷.石油化工, 2004, 33 (1): 9]

    11. [11]

      11. Huang, X. H.; Zhang, G. L.; Shang, Y. C.; Yang, X. C.; Zhang, W. X.;Wu, T. H. Petrochemical Technology, 2006, 35(4): 314 [黄小鸿, 张光林,商永臣,杨笑春, 张文祥,吴通好.石油化工, 2006, 35(4): 314]

    12. [12]

      12. Li, X. M.; Zhang, W. X.; Zhu, X. M.; Shan, H. Y.; Zhou, X. Q.; Jiang, D. Z.; Wu, T. H.; Tang, A. Q. Chinese Journal of Catalysis, 2003, 24(5): 364 [李雪梅, 张文祥,朱小梅,善洪岩, 周秀清, 蒋大振,吴通好, 唐敖庆.催化学报, 2003, 24(5): 364]

    13. [13]

      13. Rossetti, I.; Bencini, E.; Trentini, L.; Forni, L. Appl. Catal. A, 2005, 292: 118

    14. [14]

      14. Yao, S. L.; Yang, C. H.; Tan, Y. S.; Han, Y. Z. Journal of Fuel Chemistry and Technology, 2006, 34(6): 706 [姚素玲,杨彩虹, 谭猗生,韩怡卓. 燃料化学学报, 2006, 34(6): 706]

    15. [15]

      15. Wang, H. X.; Tan, D. L.; Xu, Y. D.; Bao, X. H. Chinese Journal of Catalysis, 2004, 25(6): 445 [王红霞,谭大力,徐奕德, 包信和. 催化学报, 2004, 25(6): 445]

    16. [16]

      16. Pinheiro, A. N.; Valentini, A.; Sasaki, J. M.; Oliveira, A. C. Appl. Catal. A, 2009, 355: 156

    17. [17]

      17. Li, C. L.; Fu, Y. L. Acta Phys. -Chim. Sin., 2004, 20(special issue): 906 [李春林,伏义路.物理化学学报, 2004, 20(专刊): 906]

    18. [18]

      18. Querini, C. A.; Fung, S. C. Catal. Today, 1997, 37: 277

    19. [19]

      19. Zhuo, R. S.; Tan, C. Y.; Cheng, C. R. Petrochemical Technology, 1992, 21(12): 815 [卓润生,谭长瑜,程昌瑞.石油化工, 1992, 21(12): 815]

    20. [20]

      20. Zhu, Z. R.; Ruan, T.; Chen, Q. L.; Chen, W. C.; Kong, D. J. Zeolites and mesoporous materials at the dawn of the 21st century. Amsterdam: Elsevier, 2001: 271

    21. [21]

      21. Tian, B. L.; Shu, Y. Y.; Liu, H. M.; Wang, L. S.; Xu, Y. D. Chinese Journal of Catalysis, 2000, 21(3): 255 [田丙伦, 舒玉瑛,刘红梅, 王林胜,徐奕德.催化学报, 2000, 21(3): 255]

    22. [22]

      22. Liu, H. M.; Su, L. L.;Wang, H. X.; Shen, W. J.; Bao, X. H.; Xu, Y. D. Appl. Catal. A, 2002, 236: 263

    23. [23]

      23. Qi, X. L.; Wang, Z.; Li, S. J.; Li, B.; Liu, X. Y.; Lin, B. X. Acta Phys. -Chim. Sin. 2006, 22(2): 198 [祁晓岚, 王战,李士杰, 李斌,刘希尧,林炳雄.物理化学学报, 2006, 22(2): 198]

    24. [24]

      24. Zhou, L.W.; Wang, F.; Luo, M.; Xiao,W. D.; Cheng, X. W.; Long, Y. C. Petrochemical Technology, 2008, 37(4): 333 [周丽雯, 王飞,罗漫, 肖文德,程晓维,龙英才. 石油化工, 2008, 37 (4): 333]

    25. [25]

      25. de Lucas, A.; Canizares, P.; Duran, A.; Carrero, A. Appl. Catal. A, 1997, 156: 299

    26. [26]

      26. Ibarra, J. V.; Royo, C.; Monzon, A.; Santamaría, J. Vib. Spectrosc., 1995, 9(2): 191

    27. [27]

      27. Trombetta, M.; Busca, G.; Rossini, S. A.; Piccoli, V.; Cornaro, U. J. Catal., 1997, 168(2): 334

    28. [28]

      28. Bian, J. J.; Liu, J.; Liu, Y. H.; Wang, X. S.; Liu, X. M.; Bao, X. H. Chinese Journal of Catalysis, 2001, 22(5): 415 [卞俊杰,刘靖, 刘毅慧,王祥生, 刘秀梅,包信和.催化学报, 2001, 22(5): 415]

    29. [29]

      29. Pradhan, A. R.;Wu, J. F.; Jong, S. J.; Chen, W. H.; Tsai, T. C.; Liu, S. B. Appl. Catal. A, 1997, 159: 187


  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(1075)
  • Abstract views(3132)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return