Citation: CHEN Xu-Hai, CHEN Jing-Hua, PAN Hai-Bo, LI Yu-Rong, DU Min, LIN Xin-Hua. Mathematical Model and Circuit Realization to Improve Chronoamperometry[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2920-2926. doi: 10.3866/PKU.WHXB20101117 shu

Mathematical Model and Circuit Realization to Improve Chronoamperometry

  • Received Date: 27 May 2010
    Available Online: 23 September 2010

    Fund Project: 国家高技术研究发展规划项目(863)(2008AA02Z433, 2006AA02Z4Z1) (863)(2008AA02Z433, 2006AA02Z4Z1)科技部国际合作项目(2009DFA32050) (2009DFA32050)福建省科技厅重点项目 (2008J1005)资助 (2008J1005)

  • To overcome the disadvantages of chronoamperometry we report a novel electrochemical method where a peak current is quickly generated for the current vs time curve by changing the waveform of voltage excitation in the working electrode. In particular, we derived a mathematical model to illustrate the principle of this method and it can also be used to demonstrate that the peak current is linear with regards to the concentration of the target substance. Moreover, we developed a device with an improved electrochemical circuit using a control element from control theory to change the waveform of voltage excitation. The improved circuit can detect the peak automatically without a precise sample time. Finally, the device was used to study the electrochemical behavior of K3[Fe(CN)6] and 3,3',5,5'- tetramethylbenzidine (TMB). We show that the method has a better signal to noise ratio and higher sensitivity than chronoamperometry. The obtained peak current is linear with regards to the concentration of the target substance and can be quickly detected without a precise sample time.

     

  • 加载中
    1. [1]

      1. Cottrell, F. G. Z. Phys. Chem., 1902, 42: 385

    2. [2]

      2. Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications. Trans. Shao, Y. H.; Zhu, G. Y.; Dong, X. D.; Zhang, B. L. Beijing: Chemical Industry Press, 2005: 111-112, 443-445 [Bard, A. J.; Faulkner, L. R. 电化学方法——— 原理和应用.邵元华,朱果逸,董献堆, 张柏林,译. 北京: 化学工业出版社, 2005: 111-112, 443-445]

    3. [3]

      3. Anson, F. C. Anal. Chem., 1966, 38: 54

    4. [4]

      4. Ge, F.; Cao, R. G.; Zhu, B.; Li, J. J.; Xu, D. S. Acta Phys. -Chim. Sin., 2010, 26(7): 1779 [戈芳,曹瑞国,朱斌, 李经建,徐东升. 物理化学学报, 2010, 26(7): 1779]

    5. [5]

      5. Perez, X. A.; Bianco, L. E.; Andrews, A. M. J. Neurosci Methods, 2006, 154: 245

    6. [6]

      6. Gasana, E.; Westbroek, P.; Temmerman, E.; Thun, H. P.; Kiekens, P. Anal. Chim. Acta, 2003, 486: 73

    7. [7]

      7. Micheli, L.; Grecco, R.; Badea, M.; Moscone, D.; Palleschi, G. Biosens. Bioelectron., 2005, 21: 588

    8. [8]

      8. Karasinski, J.; White, L.; Zhang, Y.; Wang, E.; Andreescu, S. Biosens. Bioelectron., 2007, 22: 2643

    9. [9]

      9. Chu, H. Y.; Kuo, T. Y.; Chang, B.; Lu, S.W.; Chiao, C. C.; Fang, W. Sens. Actuators A, 2006, 130: 254

    10. [10]

      10. Williams, G.; D'Silva, C. Sens. Actuators B, 1996, 30: 151

    11. [11]

      11. Yun, Y. H.; Dong, Z. Y.; Shanov, V. N.; Doepke, A.; Heineman, W. R.; Halsall, H. B.; Bhattacharya, A.;Wong, D. K. Y.; Schulz, M. J. Sens. Actuators B, 2008, 133: 208

    12. [12]

      12. Wei, F.; Wang, J. H.; Liao, W.; Zimmermann, B. G.; Wong, D. T.; Ho, C. M. Nucleic Acids Res., 2008, 36: e65

    13. [13]

      13. Liu, G.; Wan, Y.; Gau, V.; Zhang, J.; Wang, L. H.; Song, S. P.; Fan, C. H. J. Am. Chem. Soc., 2008, 130: 6820

    14. [14]

      14. Wang, K.; Chen, J. H.; Chen, J.; Liu, A.; Li, G.W.; Luo, H. B.; Lin, X. H.; Chen, Y. Z. Electroanalysis, 2009, 21: 1159

    15. [15]

      15. Jeon, M. K.; Zhang, Y.; McGinn, P. J. Electrochim. Acta, 2009, 54: 2837

    16. [16]

      16. Santasalo, A.; Vidal-Iglesias, F. J.; Solla-Gull仵n, J.; Bern仳, A.; Kallio, T.; Feliu, J. M. Electrochim. Acta, 2009, 54: 6576

    17. [17]

      17. Jumarie, G. Robotica, 1990, 8: 73

    18. [18]

      18. Han, Z. X.; Sun, Y. Proceedings of the Chinese Society for Electrical Engineering, 2002, 22(4): 118 [韩忠旭,孙颖. 中国电机工程学报, 2002, 22(4): 118]

    19. [19]

      19. Fick, A. Poggendorff 's Ann. Physik., 1855, 94: 59

    20. [20]

      20. Kissinger, P. T.; Heineman, W. R. Laboratory techniques in electroanalytical chemistry. NewYork: Marcel dekker, 1996: 165

    21. [21]

      21. Schwarz,W. M.; Shain, I. Anal. Chem., 1963, 35: 1770

    22. [22]

      22. Jin, Y.;Wang, H.; Lv, Z. L.; Yang, S. Y.; Cai, H. Y.; Jiang, J. F. Tsinghua Science and Technology, 2009, 14: 593

    23. [23]

      23. Huang, C. Y.; Tsai, T. C.; Thomas, J. L.; Lee, M. H.; Liu, B. D.; Lin, H. Y. Biosens. Bioelectron., 2009, 24: 2611

    24. [24]

      24. Serra, P. A.; Rocchitta, G.; Bazzu, G.; Manca, A.; Puggioni, G. M.; Lowry, J. P.; O'Neill, R. D. Sens. Actuators B, 2007, 122: 118

    25. [25]

      25. Reay, R. J.; Flannery, A. F.; Storment, C. W.; Kounaves, S. P.; Kovacs, G. T. A. Sens. Actuators B, 1996, 34: 450


  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    3. [3]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    9. [9]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    10. [10]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(1522)
  • Abstract views(2741)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return