Citation: CHEN Xu-Hai, CHEN Jing-Hua, PAN Hai-Bo, LI Yu-Rong, DU Min, LIN Xin-Hua. Mathematical Model and Circuit Realization to Improve Chronoamperometry[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2920-2926. doi: 10.3866/PKU.WHXB20101117
-
To overcome the disadvantages of chronoamperometry we report a novel electrochemical method where a peak current is quickly generated for the current vs time curve by changing the waveform of voltage excitation in the working electrode. In particular, we derived a mathematical model to illustrate the principle of this method and it can also be used to demonstrate that the peak current is linear with regards to the concentration of the target substance. Moreover, we developed a device with an improved electrochemical circuit using a control element from control theory to change the waveform of voltage excitation. The improved circuit can detect the peak automatically without a precise sample time. Finally, the device was used to study the electrochemical behavior of K3[Fe(CN)6] and 3,3',5,5'- tetramethylbenzidine (TMB). We show that the method has a better signal to noise ratio and higher sensitivity than chronoamperometry. The obtained peak current is linear with regards to the concentration of the target substance and can be quickly detected without a precise sample time.
-
-
[1]
1. Cottrell, F. G. Z. Phys. Chem., 1902, 42: 385
-
[2]
2. Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications. Trans. Shao, Y. H.; Zhu, G. Y.; Dong, X. D.; Zhang, B. L. Beijing: Chemical Industry Press, 2005: 111-112, 443-445 [Bard, A. J.; Faulkner, L. R. 电化学方法——— 原理和应用.邵元华,朱果逸,董献堆, 张柏林,译. 北京: 化学工业出版社, 2005: 111-112, 443-445]
-
[3]
3. Anson, F. C. Anal. Chem., 1966, 38: 54
-
[4]
4. Ge, F.; Cao, R. G.; Zhu, B.; Li, J. J.; Xu, D. S. Acta Phys. -Chim. Sin., 2010, 26(7): 1779 [戈芳,曹瑞国,朱斌, 李经建,徐东升. 物理化学学报, 2010, 26(7): 1779]
-
[5]
5. Perez, X. A.; Bianco, L. E.; Andrews, A. M. J. Neurosci Methods, 2006, 154: 245
-
[6]
6. Gasana, E.; Westbroek, P.; Temmerman, E.; Thun, H. P.; Kiekens, P. Anal. Chim. Acta, 2003, 486: 73
-
[7]
7. Micheli, L.; Grecco, R.; Badea, M.; Moscone, D.; Palleschi, G. Biosens. Bioelectron., 2005, 21: 588
-
[8]
8. Karasinski, J.; White, L.; Zhang, Y.; Wang, E.; Andreescu, S. Biosens. Bioelectron., 2007, 22: 2643
-
[9]
9. Chu, H. Y.; Kuo, T. Y.; Chang, B.; Lu, S.W.; Chiao, C. C.; Fang, W. Sens. Actuators A, 2006, 130: 254
-
[10]
10. Williams, G.; D'Silva, C. Sens. Actuators B, 1996, 30: 151
-
[11]
11. Yun, Y. H.; Dong, Z. Y.; Shanov, V. N.; Doepke, A.; Heineman, W. R.; Halsall, H. B.; Bhattacharya, A.;Wong, D. K. Y.; Schulz, M. J. Sens. Actuators B, 2008, 133: 208
-
[12]
12. Wei, F.; Wang, J. H.; Liao, W.; Zimmermann, B. G.; Wong, D. T.; Ho, C. M. Nucleic Acids Res., 2008, 36: e65
-
[13]
13. Liu, G.; Wan, Y.; Gau, V.; Zhang, J.; Wang, L. H.; Song, S. P.; Fan, C. H. J. Am. Chem. Soc., 2008, 130: 6820
-
[14]
14. Wang, K.; Chen, J. H.; Chen, J.; Liu, A.; Li, G.W.; Luo, H. B.; Lin, X. H.; Chen, Y. Z. Electroanalysis, 2009, 21: 1159
-
[15]
15. Jeon, M. K.; Zhang, Y.; McGinn, P. J. Electrochim. Acta, 2009, 54: 2837
-
[16]
16. Santasalo, A.; Vidal-Iglesias, F. J.; Solla-Gull仵n, J.; Bern仳, A.; Kallio, T.; Feliu, J. M. Electrochim. Acta, 2009, 54: 6576
-
[17]
17. Jumarie, G. Robotica, 1990, 8: 73
-
[18]
18. Han, Z. X.; Sun, Y. Proceedings of the Chinese Society for Electrical Engineering, 2002, 22(4): 118 [韩忠旭,孙颖. 中国电机工程学报, 2002, 22(4): 118]
-
[19]
19. Fick, A. Poggendorff 's Ann. Physik., 1855, 94: 59
-
[20]
20. Kissinger, P. T.; Heineman, W. R. Laboratory techniques in electroanalytical chemistry. NewYork: Marcel dekker, 1996: 165
-
[21]
21. Schwarz,W. M.; Shain, I. Anal. Chem., 1963, 35: 1770
-
[22]
22. Jin, Y.;Wang, H.; Lv, Z. L.; Yang, S. Y.; Cai, H. Y.; Jiang, J. F. Tsinghua Science and Technology, 2009, 14: 593
-
[23]
23. Huang, C. Y.; Tsai, T. C.; Thomas, J. L.; Lee, M. H.; Liu, B. D.; Lin, H. Y. Biosens. Bioelectron., 2009, 24: 2611
-
[24]
24. Serra, P. A.; Rocchitta, G.; Bazzu, G.; Manca, A.; Puggioni, G. M.; Lowry, J. P.; O'Neill, R. D. Sens. Actuators B, 2007, 122: 118
-
[25]
25. Reay, R. J.; Flannery, A. F.; Storment, C. W.; Kounaves, S. P.; Kovacs, G. T. A. Sens. Actuators B, 1996, 34: 450
-
[1]
-
-
[1]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[2]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[3]
Shengyan Yang , Xiangzhen Meng , Xin Wang , Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019
-
[4]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[5]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[6]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[7]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[8]
Sheng Zhang , Mingyu Wang , Xiaohong Wang , Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071
-
[9]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[10]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[11]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[12]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[13]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[14]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[15]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[16]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[17]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[18]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[19]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[20]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[1]
Metrics
- PDF Downloads(1522)
- Abstract views(2742)
- HTML views(31)