Citation: ZHANG Qiao-Bao, FENG Zeng-Fang, HAN Nan-Nan, LIN Ling-Ling, ZHOU Jian-Zhang, LIN Zhong-Hua. Preparation and Photoeletrochemical Performance of CdS Quantum Dot Sensitized ZnO Nanorod Array Electrodes[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2927-2934. doi: 10.3866/PKU.WHXB20101113
-
We sensitized CdS quantum dots on a ZnO nanorod array electrode by the successive ionic layer adsorption and reaction method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) experiments were performed to characterize the morphology, crystalline phase, and grain size of the CdS quantum dot sensitized ZnO nanorod array electrodes. The effect of CdS deposition cycle number and the precursor concentration were studied by photocurrent-potential characteristics and photocurrent spectra. The results showed that the best photoelectrochemical performance was obtained at 0.1 mol·L-1 for both Cd2+ and S2- after 15 cycles. Meanwhile, the composite films exhibited a remarkably enhanced photoelectric conversion efficiency compared with the ZnO nanorods array films and with CdS quantum dot electrodes. The monochromatic incident photon-to- electron conversion efficiency (IPCE) was as high as 76% at 380 nm. This may be attributed to the broad light harvesting capability of CdS and the efficient separation of photogenerated carriers on its interface. The reason for this enhancement was further confirmed by a photoluminescent experiment. The results showed that sensitization with CdS quantumdots reduced the recombination of electron and hole pairs resulting in an enhancement in the photocurrent.
-
-
[1]
1. Wang, Z. L. Materials Science and Engineering R, 2009, 64: 33
-
[2]
2. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater., 2009, 21: 4087
-
[3]
3. Ganesh, T.; Mane, R. S.; Cai, G.; Chang, J. H.; Han, S. H. J. Phys. Chem. C, 2009, 113: 7666
-
[4]
4. Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys., 2008, 103: 084304
-
[5]
5. Prashant, V. K. J. Phys. Chem. C, 2008, 112: 18737
-
[6]
6. Kurtis, S.; Leschkies, R. D.; Joysurya, B.; Emil, E. P.; Janice, E. B.; Barry, C.; Uwe, R. K.; David, J. N.; Eray, S. A. Nano Lett., 2007, 7: 1793
-
[7]
7. Song, B.; Cheng, K.; Wu, C.; Du, Z. L. Chinese Journal of Materials Research, 2009, 23: 89 [宋冰, 程柯,武超, 杜祖亮.材料研究学报, 2009, 23: 89]
-
[8]
8. Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc., 2008, 130: 1124
-
[9]
9. Baker, D. R.; Kamat, P. V. Adv. Funct. Mater., 2009, 19: 805
-
[10]
10. Tak, Y. J.; Hong, S. J.; Lee, J. S.; Yong, K. Journal of Crystal Growth & Design, 2009, 9: 2627
-
[11]
11. Zhang, Y.; Xie, T. F.; Jiang, T. F.; Wei, X.; Pang, S.; Wang, X.; Wang, D. J. Nanotechnology, 2009, 20: 155707
-
[12]
12. Spoerke, E. D.; Lloyd, M. T.; Lee, Y. J.; Lambert, T. N.; McKenzie, B. B.; Jiang, Y. B.; Olson, D. C.; Sounart, T. L.; Hsu, J. W. P.; Voigt, J. A. J. Phys. Chem. C, 2009, 113: 16329
-
[13]
13. Lee,W. J.; Min, S. K.; Dhas, V.; Ogale, S. B.; Han, S. H. Electrochem. Commun., 2009, 11: 103
-
[14]
14. Lee, H. J.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater., 2009, 19: 1
-
[15]
15. Song, X.; Fu, X. S.; Xie, Y.; Song, J. G.; Wang, H. L.; Sun, J.; Du, X. W. Semicond. Sci. Technol., 2010, 25: 045031
-
[16]
16. Guo, H. H.; Lin, Z. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z. J. Phys. Chem. C, 2009, 113: 12546
-
[17]
17. Feng, Z. F.; Zhang, Q. B.; Lin, L. L.; Guo, H. H.; Zhou, J. Z.; Lin, Z. H. Chem. Mater., 2010, 22: 2705
-
[18]
18. Mei, Z. X.; Zhang, X. Q.; Wang, Z. J.; Wang, J.; Li, Q. F.; Xu, S. R Spectroscopy and Spectral Analysis, 2003, 23: 461 [梅增霞, 张希青,王志坚, 王晶,李庆福,徐叙容. 光谱学与光谱分析, 2003, 23: 461]
-
[19]
19. O'Regan, B.; Grätzel, M. Nature, 1991, 335: 737
-
[20]
20. Grätzel, M. Chem. Lett., 2005, 34: 8
-
[21]
21. Shan, F. K.; Liu, G. X.; Lee, W. J.; Lee, G. H.; Kim, I. S.; Shin, B. C. Appl. Phys. Lett., 2005, 86: 221910
-
[22]
22. Xi, Y. Y.; Zhou, J. Z.; Guo, H. H.; Cai, C. D.; Lin, Z. H. Chem. Phys. Lett., 2005, 412: 60
-
[23]
23. Zhang, Q. B.; Guo, H. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Electrochim. Acta, 2010, 55: 4889
-
[24]
24. Das, K.; De, S. K. J. Phys. Chem. C, 2009, 113: 3494
-
[25]
25. Bing, J. H.; Kamat, P. V. ACS Nano, 2009, 3: 1467
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[3]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[4]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[5]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[6]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[7]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[8]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[9]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[10]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[11]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[12]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[13]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[14]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[15]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[16]
Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075
-
[17]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[18]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[19]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[20]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[1]
Metrics
- PDF Downloads(1985)
- Abstract views(4285)
- HTML views(6)