Citation: SHI Jing-Jin, LIU Ya-Min, CHEN Jie, ZHANG Yu, SHI Yao. Dynamic Performance of CO2 Adsorption with Amine-Modified SBA-16[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3023-3029. doi: 10.3866/PKU.WHXB20101109
-
Novel CO2 adsorbents for CO2 removal were prepared by introducing tetraethylenepentamine (TEPA) into SBA-16 type mesoporous silica using a post-synthetic impregnation method. The properties of the mesoporous materials before and after surface modification were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and N2 adsorption-desorption. We confirmed that TEPA was loaded onto the surface of the channels in the mesoporous materials. The surface area, pore size, and pore volume of TEPA-loaded SBA-16 decreased with an increase in TEPA loading while its fundamental pore structure was unchanged. The dynamic adsorption of CO2 onto TEPA-loaded SBA-16 as well as its regeneration property was studied in a packed column. The total adsorption capacity and breakthrough capacity increased when the amount of loaded TEPA increased from 10% to 30% (w). The sample impregnated with 30% TEPA showed the highest breakthrough capacity and total adsorption capacity of about 0.625 and 0.973 mmol·g-1 at 60℃, respectively. From 60℃ to 80℃, the CO2 dynamic adsorption behavior of TEPA-loaded SBA-16 was stable. The total adsorption capacity of CO2 on TEPA-loaded SBA-16 dropped slightly (6.45%) after 20 adsorption-desorption regeneration cycles. Their CO2 adsorption behavior was also investigated using the deactivation model, which showed an excellent predictive capability for the breakthrough curves.
-
Keywords:
-
SBA-16
, - Dynamic,
- Breakthrough curve,
- Deactivation model,
- CO2 adsorption
-
-
-
[1]
1. Idem, R.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res., 2006, 45: 2413
-
[2]
2. Yang, H. Q.; Xu, Z. H.; Fan, M. H.; Fan, M. H.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I. J. Environ. Sci., 2008, 20: 14
-
[3]
3. Aaron, D.; Tsouris, C. Separ. Sci. Technol., 2005, 40: 321
-
[4]
4. Oyenekan, B. A.; Rochelle, G. T. AICHE J., 2007, 53: 3144
-
[5]
5. Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Ind. Eng. Chem. Res., 1999, 38: 3917
-
[6]
6. Katoh, M.; Yoshikawa, T.; Tomonari, T.; Katayama, K.; Tomida, T. J. Colloid Interface Sci., 2000, 226: 145
-
[7]
7. Li, P. Y.; Zhang, S. J.; Chen, S. X.; Zhang, Q. K.; Pan, J. J.; Ge, B. Q. J. Appl. Polym. Sci., 2008, 108: 3851
-
[8]
8. Lee, J. S.; Kim, J. H.; Kim, J. T.; Suh, J. W.; Lee, J. M.; Lee, C. H. J. Chem. Eng. Data, 2002, 47: 1237
-
[9]
9. Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Energy Fuels, 2001, 15: 279
-
[10]
10. Son, W. J.; Choi, J. S.; Ahn, W. S. Microporous Mesoporous Mat., 2008, 113: 31
-
[11]
11. Wei, J.W.; Shi, J. J.; Pan, H.; Zhao,W.; Ye, Q.; Shi, Y.Microporous Mesoporous Mat., 2008, 116: 394
-
[12]
12. Choi, S.; Drese, J. H.; Jones, C. W. ChemSusChem, 2009, 2: 796
-
[13]
13. Li, L.; Yuan,W. H.; Wei, C. H. Chem. Ind. Eng. Prog., 2006, 25: 918 [李莉, 袁文辉,韦朝海.化工进展, 2006, 25: 918]
-
[14]
14. Xu, X. C.; Song, C. S.; Andresen, J. M.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Microporous Mesoporous Mat., 2003, 62: 29
-
[15]
15. Wang, L. F.; Ma, L.; Wang, A. Q.; Liu, Q.; Zhang, T. Chin. J. Catal., 2007, 28: 805 [王林芳,马磊,王爱琴,刘茜,张涛. 催化学报, 2007, 28: 805]
-
[16]
16. Zhao, H. L.; Hu, J.; Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys. - Chim. Sin., 2007, 23: 801 [赵会玲,胡军, 汪建军,周丽绘,刘洪来.物理化学学报, 2007, 23: 801]
-
[17]
17. Kim, S. N.; Son, W. J.; Choi, J. S.; Ahn, W. S. Microporous Mesoporous Mat., 2008, 115: 497
-
[18]
18. Knofel, C.; Descarpentries, J.; Benzaouia, A.; Zelenak, V.; Mornet, S.; Llewellyn, P. L.; Hornebecq, V. Microporous Mesoporous Mat., 2007, 99: 79
-
[19]
19. Yue, M. B.; Sun, L. B.; Cao, Y.; Wang, Y.; Wang, Z. J.; Zhu, J. H. Chem. Eur. J., 2008, 14: 3442
-
[20]
20. Kim, T. W.; Ryoo, R.; Kruk, M.; Gierszal, K. P.; Jaroniec, M.; Kamiya, S.; Terasak, O. J. Phys. Chem. B, 2004, 108: 11480
-
[21]
21. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc., 1998, 120: 6024
-
[22]
22. Kleitz, F.; Czuryszkiewicz, T.; Solovyov, L. A.; Lindn, M. Chem. Mater., 2006, 18: 5070
-
[23]
23. Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels, 2001, 15: 250
-
[24]
24. Kim, T. W.; Ryoo, R.; Kruk, M.; Gierszal, K. P.; Jaroniec, M.; Kamiya, S.; Terasaki, O. J. Phys. Chem. B, 2004, 108: 11480
-
[25]
25. Yasyerli, S.; Dogu, G.; Ar, I.; Dogu, T. Ind. Eng. Chem. Res., 2001, 40: 5206
-
[26]
26. Kopac, T.; Kocabas, S. Chem. Eng. Commun., 2003, 190: 1041
-
[1]
-
-
[1]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
-
[4]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[5]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[6]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[7]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[8]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[9]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[10]
Manman Jin , Zhiguo Lv , Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[13]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[14]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[15]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[16]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[19]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[20]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[1]
Metrics
- PDF Downloads(1180)
- Abstract views(3088)
- HTML views(4)