Citation: WAN Qun-Yi, FAN Shuan-Shi, YUE Xian-Jun, LANG Xue-Mei, XU Wen-Dong, LI Jing, FENG Chun-Hua. Improved Capacitive Performance of Polypyrrole Doped with 9,10-Anthraquinone-2-sulfonic Acid Sodium Salt[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2951-2956. doi: 10.3866/PKU.WHXB20101107 shu

Improved Capacitive Performance of Polypyrrole Doped with 9,10-Anthraquinone-2-sulfonic Acid Sodium Salt

  • Received Date: 4 May 2010
    Available Online: 13 September 2010

    Fund Project: 国家自然科学基金(20803025) (20803025) 广东省自然科学基金(8451064101000891) (8451064101000891)华南理工大学中央高校基本科研业务经费专项资金(2009ZM0026) 资助项目 (2009ZM0026)

  • A polypyrrole(PPy)/9,10-anthraquinone-2-sulfonic acid sodium salt (AQS) composite electrode was prepared by constant-potential electropolymerization using AQS as a counter-ion. Cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) were used to evaluate its capacitance performance. Experimental results show that the AQS dopant results in an improved specific capacitance, increased long-cycle stability, and a wide working potential range compared to that of using ClO-4 as the dopant. The PPy/AQS composite electrode has a specific capacitance of 491 F·g-1 at a CV scan rate of 50 mV·s-1 within a potential range of -0.6 to 0.6 V in 1 mol·L-1 KCl, which is 1.5 times more than that with a PPy/ClO-4 composite electrode. The improvement in capacitance should be attributed to the od redox performance of AQS and the porous submicron/ nanosized structure of the resulting composite film.

     

  • 加载中
    1. [1]

      1. Conway, B. E. Electrochemical supercapacitors: scientific fundamentals and technological applications. NewYork: Kluwer Academic, 1999: 183

    2. [2]

      2. An, H. F.; Wang, X. Y.; Li, N.; Zheng, L. P.; Chen, Q. Q. Progress in Chemistry, 2009, 21(9): 1832 [安红芳,王先友, 李娜,郑丽萍, 陈权启.化学进展, 2009, 21(9): 1832]

    3. [3]

      3. Winter, M.; Brodd, R. J. Chem. Rev., 2004, 104(10): 4245

    4. [4]

      4. Song, R. Y.; Park, J. H.; Sivakkumar, S. R.; Kim, S. H.; Ko, J. M.; Park, D. Y.; Jo, S. M.; Kim, D. Y. J. Power Sources, 2007, 166(1): 297

    5. [5]

      5. Sharma, R. K.; Rastogi, A. C.; Desu, S. B. Electrochim. Acta, 2008, 53(26): 7690

    6. [6]

      6. Wang, J.; Xu, Y. L.; Chen, X.; Du, X. F.; Li, X. F. Acta Phys. - Chim. Sin., 2007, 23(3): 299 [王杰, 徐友龙,陈曦,杜显锋, 李喜飞.物理化学学报, 2007, 23(3): 299]

    7. [7]

      7. Chen, H.; Chen, J. S.; Zhou, H. H.; Jiao, S. Q.; Chen, J. H.; Kuang, Y. F. Acta Phys. -Chim. Sin., 2004, 20(6): 593 [陈宏,陈劲松, 周海晖,焦树强,陈金华,旷亚非.物理化学学报, 2004, 20(6): 593]

    8. [8]

      8. Kim, B. C.; Ko, J. M.; Wallace, G. G. J. Power Sources, 2008, 177 (2): 665

    9. [9]

      9. Algharaibeh, Z.; Liu, X.; Pickup, P. G. J. Power Sources, 2009, 187(2): 640

    10. [10]

      10. Groenendaal, L. B.; Jonas, F. F. Adv. Mater., 2000, 12: 481

    11. [11]

      11. Weidlich, C.; Man ld, K. M.; Jüttner, K. Electrochim. Acta, 2005, 50(7-8): 1547

    12. [12]

      12. Algharaibeh, Z.; Liu, X.; Pickup, P. G. J. Power Sources, 2009, 187(2): 640

    13. [13]

      13. Kalinathan, K.; Des Roches, D. P.; Liu, X.; Pickup, P. G. J. Power Sources, 2008, 181(1): 182

    14. [14]

      14. Seredych, M.; Hulicova-Jurcakova, D.; Lu, G. Q.; Bandosz, T. J. Carbon, 2008, 46(11): 1475

    15. [15]

      15. Hepel, M. Electrochim. Acta, 1996, 41(1): 63

    16. [16]

      16. Ingram, M. D.; Staesche, H.; Ryder, K. S. J. Power Sources, 2004, 129(1): 107

    17. [17]

      17. Feng, C.; Chan, P. C. H.; Hsing, I. M. Electrochem. Commun., 2007, 9(1): 89

    18. [18]

      18. Feng, C.; Ma, L.; Li, F.; Mai, H.; Lang, X.; Fan, S. Biosens. Bioelectron., 2010, 25: 1516

    19. [19]

      19. Rubinger, C. P. L.; Martins, C. R.; De Paoli, M. A.; Rubinger, R. M. Sens. Actuators B, 2007, 123(1): 42

    20. [20]

      20. Kumar, S. S.; Kumar, C. S.; Mathiyarasu, J.; Phani, K. L. Langmuir, 2007, 23(6): 3401

    21. [21]

      21. Ahmed, S. M.; Nagaoka, T.; Ogra, K. Anal. Sci., 1998, 14(3): 535

    22. [22]

      22. Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. J. Power Sources, 2009, 190(2): 578

    23. [23]

      23. Kotz, R.; Carlen, M. Electrochim. Acta, 2000, 45(15-16): 2483

    24. [24]

      24. Belanger, D.; Ren, X.; Davey, J.; Uribe, F.; ttesfeld, S. J. Electrochem. Soc., 2000, 147: 2923


  • 加载中
    1. [1]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    5. [5]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    12. [12]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(1283)
  • Abstract views(2909)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return