Citation: LIU Hai-Ying, MENG Fan-Cui, LI Ping, DING Shi-Liang. Effects of CH3OH and NH3 on the Hydrolytic Deamination Mechanismof Adenine[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3067-3072. doi: 10.3866/PKU.WHXB20101106 shu

Effects of CH3OH and NH3 on the Hydrolytic Deamination Mechanismof Adenine

  • Received Date: 27 April 2010
    Available Online: 13 September 2010

    Fund Project: 山东省博士基金(2008BS02014) (2008BS02014)济南大学校基金(XKY0809)资助项目 (XKY0809)

  • The effects of CH3OH and NH3 on the hydrolytic deamination mechanism of adenine were studied by density functional theory at the B3LYP/6-311G(d,p) level. The results reveal that a tetrahedral intermediate is formed after a nucleophilic attack by a water molecule. Two intermediates are formed through conformational changes and different pathways are responsible. In pathway a, an assistant molecule takes part in the formation of the transition state and acts as a bridge to transfer a hydrogen atom, while in pathway b the assistant molecule is not involved in the creation of the transition state and acts only as a medium. The adenine takes place an amine-imine tautomerization before the nucleophilic attack under NH3, which is not the case for the methanol-assisted mechanism. Energy results indicate that the energy barrier of the methanol-assisted adenine deamination is similar to that of the water-assisted reaction while the ammonia-assisted reaction has amuch higher energy barrier compared with the water-assisted reaction.

     

  • 加载中
    1. [1]

      1. Glaser, R.; Rayat, S.; Lewis, M.; Son, M. S.; Meyer, S. J. Am. Chem. Soc., 1999, 121: 6108

    2. [2]

      2. Almatarneh, M. H.; Flinn, C. G.; Poirier, R. A.; Sokalski,W. A. J. Phys. Chem. A, 2006, 110: 8227

    3. [3]

      3. Almatarneh, M. H.; Flinn, C. G.; Poirier, R. A. J. Chem. Inf. Model., 2008, 48: 831

    4. [4]

      4. Labet, V.; Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A, 2008, 112: 11487

    5. [5]

      5. Labet, V.; Morell, C.; Cadet, J.; Eriksson, L. A.; Grand, A. J. Phys. Chem. A, 2009, 113: 2524

    6. [6]

      6. Labet, V.; Grand, A.; Cadet, J.; Eriksson, L. A. ChemPhysChem, 2008, 9: 1195

    7. [7]

      7. Zhang, A.; Yang, B.; Li, Z. J. Mol. Struct. -Theochem, 2007, 819: 95

    8. [8]

      8. Zhu, C.; Meng, F. Struct. Chem., 2009, 20: 685

    9. [9]

      9. Zheng, H.; Meng, F. Struct. Chem., 2009, 20: 943

    10. [10]

      10. Kim, H. S.; Ahn, D. S.; Chung, S. Y.; Kim, S. K.; Lee, S. J. Phys. Chem. A, 2007, 111: 8007

    11. [11]

      11. Gu, J.; Leszczynski, J. J. Phys. Chem. A, 1999, 103: 2744

    12. [12]

      12. Matsubara, T.; Ishikura, M.; Aida, M. J. Chem. Inf. Model., 2006, 46: 1276

    13. [13]

      13. Danilov, V. I.; van Mourik, T.; Kurita, N.; Wakabayashi, H.; Tsukamoto, T.; Hovorun, D. M. J. Phys. Chem. A, 2009, 113: 2233

    14. [14]

      14. Haranczyk, M.; Rak, J.; Gutowski, M.; Radisic, D.; Stokes, S. T.; Bowen, K. H. J. Phys. Chem. B, 2005, 109: 13383

    15. [15]

      15. Kabelác, M.; Hobza, P. J. Phys. Chem. B, 2006, 110: 14515

    16. [16]

      16. Shukla, M. K.; Dubey, M.; Zakar, E.; Namburu, R.; Leszczynski, J. Chem. Phys. Lett., 2010, 493: 130

    17. [17]

      17. Becke, A. D. J. Chem. Phys., 1993, 98: 5648

    18. [18]

      18. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    19. [19]

      19. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett., 1989, 157: 200

    20. [20]

      20. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C. J. Chem. Phys., 1999, 110: 7650

    21. [21]

      21. Curtiss, L. A.; Raghavachari, K. J. Chem. Phys., 1998, 109: 7764

    22. [22]

      22. Tang, Y. Z.; Sun, J. Y.; Sun, H.; Pan, Y. R.;Wang, R. S. Theor. Chem. Acc., 2008, 119: 297

    23. [23]

      23. Cancès, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys., 1997, 107: 3032

    24. [24]

      24. Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett., 1998, 286: 253

    25. [25]

      25. Mennucci, B.; Tomasi, J. J. Chem. Phys., 1997, 106: 5151

    26. [26]

      26. Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; ddard III, W. A.; Skiff,W. M. J. Am. Chem. Soc., 1992, 114: 10024

    27. [27]

      27. Rappé, A. K.; ddard III,W. A. J. Phys. Chem., 1991, 95: 3358

    28. [28]

      28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision D.01. Wallingford, CT: Gaussian Inc., 2004


  • 加载中
    1. [1]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    5. [5]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    6. [6]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    18. [18]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    19. [19]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(1038)
  • Abstract views(2612)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return