Citation: LIU Hai-Ying, MENG Fan-Cui, LI Ping, DING Shi-Liang. Effects of CH3OH and NH3 on the Hydrolytic Deamination Mechanismof Adenine[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3067-3072. doi: 10.3866/PKU.WHXB20101106
-
The effects of CH3OH and NH3 on the hydrolytic deamination mechanism of adenine were studied by density functional theory at the B3LYP/6-311G(d,p) level. The results reveal that a tetrahedral intermediate is formed after a nucleophilic attack by a water molecule. Two intermediates are formed through conformational changes and different pathways are responsible. In pathway a, an assistant molecule takes part in the formation of the transition state and acts as a bridge to transfer a hydrogen atom, while in pathway b the assistant molecule is not involved in the creation of the transition state and acts only as a medium. The adenine takes place an amine-imine tautomerization before the nucleophilic attack under NH3, which is not the case for the methanol-assisted mechanism. Energy results indicate that the energy barrier of the methanol-assisted adenine deamination is similar to that of the water-assisted reaction while the ammonia-assisted reaction has amuch higher energy barrier compared with the water-assisted reaction.
-
Keywords:
-
Adenine deamination
, - B3LYP,
- G3MP2,
- Ammonia-assistance,
- Methanol-assistance
-
-
-
[1]
1. Glaser, R.; Rayat, S.; Lewis, M.; Son, M. S.; Meyer, S. J. Am. Chem. Soc., 1999, 121: 6108
-
[2]
2. Almatarneh, M. H.; Flinn, C. G.; Poirier, R. A.; Sokalski,W. A. J. Phys. Chem. A, 2006, 110: 8227
-
[3]
3. Almatarneh, M. H.; Flinn, C. G.; Poirier, R. A. J. Chem. Inf. Model., 2008, 48: 831
-
[4]
4. Labet, V.; Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A, 2008, 112: 11487
-
[5]
5. Labet, V.; Morell, C.; Cadet, J.; Eriksson, L. A.; Grand, A. J. Phys. Chem. A, 2009, 113: 2524
-
[6]
6. Labet, V.; Grand, A.; Cadet, J.; Eriksson, L. A. ChemPhysChem, 2008, 9: 1195
-
[7]
7. Zhang, A.; Yang, B.; Li, Z. J. Mol. Struct. -Theochem, 2007, 819: 95
-
[8]
8. Zhu, C.; Meng, F. Struct. Chem., 2009, 20: 685
-
[9]
9. Zheng, H.; Meng, F. Struct. Chem., 2009, 20: 943
-
[10]
10. Kim, H. S.; Ahn, D. S.; Chung, S. Y.; Kim, S. K.; Lee, S. J. Phys. Chem. A, 2007, 111: 8007
-
[11]
11. Gu, J.; Leszczynski, J. J. Phys. Chem. A, 1999, 103: 2744
-
[12]
12. Matsubara, T.; Ishikura, M.; Aida, M. J. Chem. Inf. Model., 2006, 46: 1276
-
[13]
13. Danilov, V. I.; van Mourik, T.; Kurita, N.; Wakabayashi, H.; Tsukamoto, T.; Hovorun, D. M. J. Phys. Chem. A, 2009, 113: 2233
-
[14]
14. Haranczyk, M.; Rak, J.; Gutowski, M.; Radisic, D.; Stokes, S. T.; Bowen, K. H. J. Phys. Chem. B, 2005, 109: 13383
-
[15]
15. Kabelác, M.; Hobza, P. J. Phys. Chem. B, 2006, 110: 14515
-
[16]
16. Shukla, M. K.; Dubey, M.; Zakar, E.; Namburu, R.; Leszczynski, J. Chem. Phys. Lett., 2010, 493: 130
-
[17]
17. Becke, A. D. J. Chem. Phys., 1993, 98: 5648
-
[18]
18. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785
-
[19]
19. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett., 1989, 157: 200
-
[20]
20. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C. J. Chem. Phys., 1999, 110: 7650
-
[21]
21. Curtiss, L. A.; Raghavachari, K. J. Chem. Phys., 1998, 109: 7764
-
[22]
22. Tang, Y. Z.; Sun, J. Y.; Sun, H.; Pan, Y. R.;Wang, R. S. Theor. Chem. Acc., 2008, 119: 297
-
[23]
23. Cancès, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys., 1997, 107: 3032
-
[24]
24. Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett., 1998, 286: 253
-
[25]
25. Mennucci, B.; Tomasi, J. J. Chem. Phys., 1997, 106: 5151
-
[26]
26. Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; ddard III, W. A.; Skiff,W. M. J. Am. Chem. Soc., 1992, 114: 10024
-
[27]
27. Rappé, A. K.; ddard III,W. A. J. Phys. Chem., 1991, 95: 3358
-
[28]
28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision D.01. Wallingford, CT: Gaussian Inc., 2004
-
[1]
-
-
[1]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[2]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[3]
Xiaojun Wu , Kai Hu , Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052
-
[4]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[5]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[6]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[7]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[8]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[9]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[10]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[11]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[12]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[13]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[14]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[15]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[16]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[17]
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
-
[18]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[19]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[20]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[1]
Metrics
- PDF Downloads(1038)
- Abstract views(2569)
- HTML views(6)