Citation: ZONG Hua, WANG Lei, FANG Hong-Bo, MAO Lei-Ting, WANG Yu-Hui, ZHANG Lu, ZHAO Sui, YU Jia-Yong. Effect of Hydrophobically Modified Polyacrylamide on Interfacial Dilational Rheological Properties of Crude Oil Components[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2982-2988. doi: 10.3866/PKU.WHXB20101105 shu

Effect of Hydrophobically Modified Polyacrylamide on Interfacial Dilational Rheological Properties of Crude Oil Components

  • Received Date: 27 June 2010
    Available Online: 10 September 2010

    Fund Project: 国家科技重大专项(2008ZX05011) (2008ZX05011)国家高技术研究发展计划项目(863) (2008AA092801)资助 (863) (2008AA092801)

  • The effect of hydrophobically modified polyacrylamide (HMPAM) on the dilational rheological properties of interfacial films containing acidic components or asphaltenes in petroleum crude oil was investigated by drop shape analysis method. The influence of surface-active component concentration on the dilational rheological behavior was investigated. Experimental results show that the dilational modulus is approximately 100 mN·m-1 for a 1750 mg·L-1 HMPAMsolution. This is due to the formation of an interfacial structure by a hydrophobic interaction among HMPAM molecules. As the interfacial film ages, the acidic component molecules adsorb onto the interface and form mixed complexes with the hydrophobic parts of the HMPAMmolecules. These interactions reduce the dilational modulus by a fast exchange process and the elasticity of the structure improves because of an enhanced hydrophobic interaction among the HMPAMmolecules. For asphaltenes, the nature of the interfacial film is controlled by both the structure of HMPAMand the interfacial complex formed by pure asphaltene molecules because of their relatively larger molecular sizes as well as their strong intermolecular interactions, which leads to a slight decrease in the dilational modulus compared with the pure HMPAMsystem.

     

  • 加载中
    1. [1]

      1. Taylor, K. C.; Nasr-El-Din, H. A. J. Petrol. Sci. Eng., 1998, 19: 265

    2. [2]

      2. Taylor, K. C.; Nasr-El-Din, H. A. Colloids Surf. A, 1998, 108: 49

    3. [3]

      3. Shen, P. P.; Yu, J. Y. Fundamental study on extensively enhanced petroleumrecovery. Beijing: PetroleumIndustry Press, 2001: a38- 92; b133-159; c160-193 [沈平平, 俞稼镛.大幅度提高石油采收率的基础研究. 北京: 石油工业出版社, 2001: a38-92; b133-159; c160-193]

    4. [4]

      4. Li, M. Y.; Wu, Z. L. Petroleumemulsion. Beijing: Science Press, 2009: 40-68 [李明远,吴肇亮.石油乳状液.北京: 科学出版社, 2009: 40-68]

    5. [5]

      5. Liggieri, L.; Ferrari,M.;Mondelli, D.; Ravera, F. Faraday Discuss., 2005, 129: 125

    6. [6]

      6. Zhu, Y. Y.; Xu, G. Y. Acta Phys. -Chim. Sin., 2009, 25: 191 [朱艳艳, 徐桂英.物理化学学报, 2009, 25: 191]

    7. [7]

      7. Wang, Y. Y.; Zhang, L.; Sun, T. L. Zhao, S.; Yu, J. Y. Chem. J. Chin. Univ., 2003, 24: 2044 [王宜阳, 张路,孙涛垒,赵濉, 俞稼镛. 高等学校化学学报2003, 24: 2044]

    8. [8]

      8. Hannisdal, A.; Orr, R.; Sjöblom, J. J. Dispersion Sci. Technol., 2007, 28: 361

    9. [9]

      9. Dicharry, C.; Arla, D.; Sinquin, A.; Graciaa, A.; Bouriat, P. J. Colloid Interface Sci., 2006, 297: 785

    10. [10]

      10. Aske, N.; Orr, R.; Sjöblom, J. J. Dispersion Sci. Technol., 2002, 23: 809

    11. [11]

      11. Freer, E. M.; Radke, C. J. J. Adhes., 2004, 80: 481

    12. [12]

      12. Bouriat, P.; ElKerri, N.; Graciaa, A.; Lachaise, J. Langmuir, 2004, 20: 7459

    13. [13]

      13. Yang, X.; Verruto, V. J.; Kilpatrick, P. K. Energy Fuels, 2007, 21: 1343

    14. [14]

      14. Sun, T. L.; Zhang, L.;Wang, Y. Y.; Zhao, S.; Yu, J. Y. Chem. J. Chin. Univ., 2003, 24: 2243 [孙涛垒,张路, 王宜阳,赵濉, 俞稼镛. 高等学校化学学报, 2003, 24: 2243]

    15. [15]

      15. Sun, T. L.; Peng, B.; Xu, Z. M.; Zhang, L.; Zhao, S.; Li, M. Y.; Yu, J. Y. Acta Phys. -Chim. Sin., 2002, 18: 161 [孙涛垒,彭勃,许志明,张路,赵濉,李明远,俞稼镛.物理化学学报, 2002, 18: 161]

    16. [16]

      16. Sun, T. L.; Zhang, L.;Wang, Y. Y.; Peng, B.; Zhao, S.; Li, M. Y.; Yu, J. Y. J. Dispersion Sci. Technol., 2003, 24: 699

    17. [17]

      17. Sun, T. L.; Zhang, L.;Wang, Y. Y.; Zhao, S.; Peng, B.; Li, M. Y.; Yu, J. Y. J. Colloid Interface Sci., 2002, 255: 241

    18. [18]

      18. Zhang, L.; Yan, F.; Wang, X. C.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dispersion Sci. Technol., 2009, 30: 250

    19. [19]

      19. Zhang, L.; Wang, X. C.; Yan, F.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloid Polym. Sci., 2008, 286: 1291

    20. [20]

      20. Wang, D. X.; Luo, L.; Zhang, L.; Zhao, S.; Wang, L.; ng, Q. T.; Liao, L.; Chu, Y. P.; Yu, J. Y. J. Dispersion Sci. Technol., 2007, 28: 725

    21. [21]

      21. Luo, L.; Wang, D. X.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dispersion Sci. Technol., 2007, 28: 263

    22. [22]

      22. Zhang, L.; Wang, X. C.; ng, Q. T.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin., 2007, 23: 1652 [张磊,王晓春,宫清涛,罗澜,张路,赵濉,俞稼镛.物理化学学报, 2007, 23: 1652]

    23. [23]

      23. Li, X. L.; Zhang, L.; ng, Q. T.; Zhang, L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin., 2010, 26: 631 [李秀兰, 张磊,宫清涛, 张路,赵濉,俞稼镛.物理化学学报, 2010, 26: 631]

    24. [24]

      24. Lucassen, J.; van den Tempel, M. J. Colloid Interface Sci., 1972, 41: 491

    25. [25]

      25. van den Tempel, M.; Lucassen-Reynders, E. H. Adv. Colloid Interface Sci., 1983, 18: 281

    26. [26]

      26. Wang, Y. Y.; Dai, Y. H.; Zhang, L.; Luo, L.; Chu, Y. P.; Zhao, S.; Li, M. Y.; Wang, E. J.; Yu, J. Y. Macromolecules, 2004, 37: 2930

    27. [27]

      27. Huang, Y. P.; Zhang, L.; Luo, L.; Zhao, S.; Yu, J. Y. J. Phys. Chem. B, 2007, 111: 5640

    28. [28]

      28. Verruto, V. J.; Le, R. K.; Kilpatrick, P. K. J. Phys. Chem. B, 2009, 113: 13788


  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    12. [12]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    13. [13]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    14. [14]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    15. [15]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    16. [16]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(1288)
  • Abstract views(2986)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return