Citation: ZHANG Dong-Feng, NIU Li-Ya, GUO Lin. Solution Synthesis Strategies for Hierarchical Nanostructures[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2865-2876. doi: 10.3866/PKU.WHXB20101104 shu

Solution Synthesis Strategies for Hierarchical Nanostructures

  • Received Date: 30 June 2010
    Available Online: 9 September 2010

    Fund Project: 国家自然科学基金(20803002, 50725208, 20973019) (20803002, 50725208, 20973019)高校博士点新教师专项基金(20070006016)资助项目 (20070006016)

  • The coupling and synergistic effects of the unique structure of multi-level, multi-dimension, and multi- components allow for the directed synthesis of hierarchical nanostructures and this field has attracted much interest recently. In this paper, we discuss progress in the solution synthesis of three kinds of hierarchical structures including core-shell, segmented, and branched structures. We focus on the formation mechanism and the influencing factors of the hierarchical structures by considering the crystal nucleation-growth process and growth kinetics. The construction of the hierarchical nanocomposites mainly involves the heterogeneous nucleation-growth of the secondary structures on the primary structures or a component exchange between the two kinds of materials. The degree of lattice matching, the degree of supersaturation, and chemical bonding mainly influence the hetero-nucleation sites of the secondary structures on the primary structures. The growth behaviors of the secondary structures can be modulated mainly by adjusting their crystallographic energy through surface modifications. For the synthesis via component exchange, an important prerequisite is that the primary and secondary structures share the same anions or cations.

     

  • 加载中
    1. [1]

      1. Nudelman, F.; tliv, B. A.; Addadi, L.; Weiner, S. J. Struct. Biol., 2006, 153: 176

    2. [2]

      2. Feng, L.; Li, S.; Li, Y.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv Mater., 2002, 14: 1857

    3. [3]

      3. Choi, S. J.; Suh, K. Y.; Lee, H. H. J. Am. Chem. Soc., 2008, 130: 6312

    4. [4]

      4. Fang, B. Z.; Kim, M.; Kim, J. H.; Yu, J. S. Langmuir, 2008, 24: 12068

    5. [5]

      5. Yang, R.; Chueh, Y. L.; Morber, J. R.; Snyder, R.; Chou, L. J.; Wang, Z. L. Nano Lett., 2007, 7: 269

    6. [6]

      6. Lyon, J. L.; Fleming, D. A. Nano Lett., 2004, 4: 719

    7. [7]

      7. Xu, Z. C.; Sun, S. H. J. Am. Chem. Soc., 2007, 129: 8698

    8. [8]

      8. Nash, M. A.; Lai, J. J.; Hoffman, A. S.; Yager, P.; Stayton, P. S. Nano Lett., 2010, 10: 85

    9. [9]

      9. Li, J. J.; Wang, Y. A.; Guo,W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. J. Am. Chem. Soc., 2003, 125: 12567

    10. [10]

      10. Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Adv. Mater., 2005, 17: 176

    11. [11]

      11. Li, L.; Protiere, M.; Reiss, P. Chem. Mater., 2008, 20: 2621

    12. [12]

      12. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science, 2002, 298: 1759

    13. [13]

      13. Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Nature Biotech., 2001, 19: 631

    14. [14]

      14. Chan, W. C.W.; Nie, S. M. Science, 1998, 281: 2016

    15. [15]

      15. Nann, T.; Mulvaney, P. Angew. Chem. Int. Edit., 2004, 43: 5393

    16. [16]

      16. Li, H. B.; Li, Y. L.; Cheng, J. Chem. Mater., 2010, 22: 2451

    17. [17]

      17. Jing, L.H.; Yang, C. H.; Qiao, R. R.; Niu, M.; Du, M. H.;Wang, D. Y.; Gao, M. Y.Chem. Mater., 2010, 22: 420

    18. [18]

      18. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science, 1998, 281: 2013

    19. [19]

      19. Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Möhwald, H. Angew. Chem. Int. Edit., 1998, 37: 2201

    20. [20]

      20. Caruso, F.; Lichtenfeld, H.; Giersig, M.; Möhwald, H. J. Am. Chem. Soc., 1998, 120: 8523

    21. [21]

      21. Caruso, F.; Caruso, R. A.; Möhwald, H. Science, 1998, 282: 1111

    22. [22]

      22. Caruso, R. A.; Susha, A.; Caruso, F. Chem. Mater., 2001, 13: 400

    23. [23]

      23. Shin, W. J.; Kim, J. Y.; Chob, G.; Lee, J. S. J. Mater. Chem., 2009, 19: 7322

    24. [24]

      24. Liu, J. G.; Liang, J. G.; Han, H. Y.; Sheng, Z. H. Mater. Lett., 2009, 63: 2224

    25. [25]

      25. Lu, Y.; Yin, Y. D.; Xia, Y. N. Adv. Mater., 2001, 13: 271

    26. [26]

      26. Cho, E. C.; Camar , P. H. C.; Xia, Y. N. Adv. Mater., 2010, 22: 744

    27. [27]

      27. Qiu, P. H.; Mao, C. B. ACS Nano, 2010, 4: 1573

    28. [28]

      28. Ge, C.; Zhang, D. Z.;Wang, A. L.; Yin, H. B.; Ren, M.; Liu, Y. M.; Jiang, T. S.; Yu, L. B. J. Phys. Chem. Solid., 2009, 70: 1432

    29. [29]

      29. Lee, C.; Kim, I.; Shin, H.; Kim, S.; Cho, J. Nanotechnology, 2010, 21: 185704

    30. [30]

      30. Yeom, B.; Char, K. Chem. Mater., 2010, 22: 101

    31. [31]

      31. Protiere, M.; Reiss, P. Small, 2007, 3: 399

    32. [32]

      32. Reiss, P.; Protiere, M.; Li, L. Small, 2009, 5: 154 and the literature therein

    33. [33]

      33. Carbone, L.; Nobile, C.; Giorg, M. D.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S.; Cin lani, R.; Krahne, R.; Manna, L. Nano Lett., 2007, 7: 2942

    34. [34]

      34. Aharoni, A.; Mokari, T.; Popov, I.; Banin, U. J. Am. Chem. Soc., 2006, 128: 257

    35. [35]

      35. Liu, H. T.; Owen, J. S.; Alivisatos, A. P. J. Am. Chem. Soc., 2007, 129: 305

    36. [36]

      36. Blackman, B.; Battaglia, D.; Peng, X. G. Chem. Mater., 2008, 20: 4847

    37. [37]

      37. Chin, P. T. K.; Donega, C. D. M.; Bavel, S. S.; Meskers, S. C. J.; Sommerdijk, N.; Janssen, R. A. J. J. Am. Chem. Soc., 2007, 129: 4880

    38. [38]

      38. Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. J. Am. Chem. Soc., 2003, 125: 11466

    39. [39]

      39. Zimmer, J. P.; Kim, S.W.; Ohnishi, S.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. G. J. Am. Chem. Soc., 2006, 128: 2526

    40. [40]

      40. Sung, Y. M.; Park, K. S.; Lee, Y. J.; Kim, T. G. J. Phys. Chem. C, 2007, 111: 1239

    41. [41]

      41. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Nature Mater., 2007, 6: 692

    42. [42]

      42. Fan, F. R.; Liu, D. Y.; Wu, Y.; Duan, S.; Xie, Z. X.; Jiang, Z. Y.; Tian, Z. Q. J. Am. Chem. Soc., 2008, 130: 6949

    43. [43]

      43. Ge, C.; Zhang, D. Z.; Wang, A. L.; Yin, H. B.; Ren, M.; Liu, Y. M.; Jiang, T. S.; Yu, L. B. J. Am. Chem. Soc., 2010, 132: 2506

    44. [44]

      44. Min, M.; Kim, C.; Yang, Y. I.; Yi, J.; Lee, H. Phys. Chem. Chem. Phys., 2009, 11: 9759

    45. [45]

      45. Alayoglu, S.; Zavalij, P.; Eichhorn, B. ACS Nano, 2009, 3: 3127

    46. [46]

      46. Wu, Y.; Jiang, P.; Jiang, M.; Wang, T. W.; Guo, C. F.; Xie, S. S.; Wang, Z. L. Nanotechnology, 2009, 20: 305602

    47. [47]

      47. Chen, Y. J.; Xue, X. Y.; Wang, T. H. Nanotechnology, 2005, 16: 1978

    48. [48]

      48. Krishna, K. S.; Vivekanandan, G.; Ravindera, D.; Eswaramoorthy, M. Chem. Commun., 2010, 46: 2989

    49. [49]

      49. Teng, X. W.; Black, D.; Watkins, N. J.; Gao, Y. L.; Yang, H. Nano Lett., 2003, 3: 261

    50. [50]

      50. Li, X. L.; Lou, T. J.; Sun, X. M.; Li, Y. D. Inorg. Chem., 2004, 43: 5442

    51. [51]

      51. Bao, J. C.; Liang, Y. Y.; Xu, Z.; Si, L. Adv. Mater., 2003, 15: 1832

    52. [52]

      52. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science, 2004, 30: 711

    53. [53]

      53. Kim, S. H.; Yin, Y. D.; Alivisatos, A. P.; Somorjai G. A.; Yates J. T. J. Am. Chem. Soc., 2007, 129: 9510

    54. [54]

      54. Gao, J. H.; Liang, G. L.; Zhang, B.; Kuang, Y.; Zhang X. X.; Xu, B. J. Am. Chem. Soc., 2007, 129: 1428

    55. [55]

      55. Wang, Y. L.; Cai, L.; Xia, Y. N. Adv. Mater., 2005, 17: 473

    56. [56]

      56. Jiao, S. H.; Xu, L. F.; Jiang, K.; Xu, D. S. Adv. Mater., 2006, 18: 1174

    57. [57]

      57. Gao, J. H.; Zhang, B.; Zhang, X. X.; Xu, B. Angew. Chem. Int. Edit., 2006, 45: 1220

    58. [58]

      58. Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Gösele, U.; Zacharias, M. Nanotechnology, 2006, 17: 5157

    59. [59]

      59. Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; sele, U. Nature Mater., 2006, 5: 627

    60. [60]

      60. Railsback, J. G.; Johnston-Peck, A. C.; Wang, J. W.; Tracy, J. B. ACS Nano, 2010, 4: 1913

    61. [61]

      61. Tian, L.; Yang, X. F.; Lu, P.; Williams, I. D.; Wang, C. H.; Ou, S. Y.; Liang, C. L.; Wu, M. M. Inorg. Chem., 2008, 47: 5522

    62. [62]

      62. Gao, P. X.; Wang, Z. L. J. Am. Chem. Soc., 2003, 125: 11299

    63. [63]

      63. Wang, Q.; Geng, B. Y.; Wang, S. Z.; Ye, Y. X.; Tao, B. Chem. Commun., 2010, 46: 1899

    64. [64]

      64. Shibata, T.; Bunker, B. A.; Zhang, Z.; Meisel, D.; Vardeman, C. F.; Gezelter, J. D. J. Am. Chem. Soc., 2002, 124: 11989

    65. [65]

      65. Chen, J.; Wiley, B.; McLellan, J. M.; Xiong, Y.; Li, Z. Y.; Xia, Y. N. Nano Lett., 2005, 5: 2058

    66. [66]

      66. Cobley, C. M.; Campbell, D. J.; Xia, Y. N. Adv. Mater., 2008, 20: 748

    67. [67]

      67. Sun, Y.; Mayers, B.; Xia, Y. N. Nano Lett., 2002, 2: 481

    68. [68]

      68. Sun, Y.; Mayers, B.; Xia, Y. N. Adv. Mater., 2003, 15: 641

    69. [69]

      69. Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z. Y.; Xia, Y. N. J. Am. Chem. Soc., 2006, 128: 14776

    70. [70]

      70. Sun, Y.; Wiley, B. J.; Li, Z. Y.; Xia, Y. N. J. Am. Chem. Soc., 2004, 126: 9399

    71. [71]

      71. Lu, X.; Tuan, H. Y.; Chen, J.; Li, Z. Y.; Korgel, B. A.; Xia, Y. N. J. Am. Chem. Soc., 2007, 129: 1733

    72. [72]

      72. Lee,W. R.; Kim, M. G.; Choi, J. R.; Park, J. I.; Ko, S. J.; Oh, S. J.; Cheon, J. J. Am. Chem. Soc., 2005, 127: 16090

    73. [73]

      73. Park, J. I.; Lee,W. R.; Jun, Y. W.; Lee, J. S.; Lee, W. R.; Cheon, J. J. Am. Chem. Soc., 2004, 126: 9072

    74. [74]

      74. Chen, D.; Li, J. J.; Shi, C. S.; Du, X. W.; Zhao, N. Q.; Sheng, J.; Liu, S. Chem. Mater., 2007, 19: 3399

    75. [75]

      75. Lu, Y.; Zhao, Y.; Yu, L.; Dong, L.; Shi, C.; Hu, M. J.; Xu, Y. J.; Wen, L. P.; Yu, S. H. Adv. Mater., 2010, 22: 1407

    76. [76]

      76. Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Nature, 2004, 429: 642

    77. [77]

      77. Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. Nature, 2005, 434: 1085

    78. [78]

      78. Li, D. Y.; Wu, Y.; Fan, R.; Yang, P. D.; Majumdar, A. Appl. Phys. Lett., 2003, 83: 3186

    79. [79]

      79. Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Nature, 2002, 415: 617

    80. [80]

      80. Yan, R. X.; Gargas, D.; Yang, P. D. Nature Photonics, 2009, 3: 569

    81. [81]

      81. Penn, S. G.; He, L.; Natan, M. J. Curr. Opin. Chem. Biol., 2003, 7: 609

    82. [82]

      82. Jung, J.; Seo, D.; Park, G.; Ryu, S.; Song, H. J. Phys. Chem. C, 2010, 114: 12529

    83. [83]

      83. Salem, A. K.; Searson, P. C.; Leong, K. W. Nat. Mater., 2003, 2: 668

    84. [84]

      84. Liu, F.; Lee, J. Y.; Zhou, W. J. Small, 2006, 2: 121

    85. [85]

      85. Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Science, 2004, 304: 1787

    86. [86]

      86. Saunders, A. E.; Popov, I.; Banin, U. J. Phys. Chem. B, 2006, 110: 25421

    87. [87]

      87. Menagen, G.; Mocatta, D.; Salant, A.; Popov, I.; Dorfs, D.; Banin, U. Chem. Mater., 2008, 20: 6900

    88. [88]

      88. Mokarim, T.; Sztrumm, C. G.; Salantm, A.; Rabanim, E.; Baninm, U. Nature Mater., 2005, 4: 855

    89. [89]

      89. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Nano Lett., 2005, 5: 379

    90. [90]

      90. Carbone, L.; Kudera, S.; Giannini, C.; Ciccarella, G.; Cin lani, R.; Cozzoli, P. D.; Manna, L. J. Mater. Chem., 2006, 16: 3952

    91. [91]

      91. Huang, S. S.; Huang, J. M.; Yang, J. A.; Peng, J. J.; Zhang, Q. B.; Peng, F.; Wang, H. J.; Yu, H. Chem.-Eur. J., 2010, 16: 5920

    92. [92]

      92. Hewa-Kasakarage, N. N.; Kirsanova, M.; Nemchinov, A.; Schmall, N.; El-Khoury, P. Z.; Tarnovsky, A. N.; Zamkov, M. J. Am. Chem. Soc., 2009. 131: 1328

    93. [93]

      93. Menagen, G.; MacDonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U. J. Am. Chem. Soc., 2009, 131: 17406

    94. [94]

      94. Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Kornowski, A.; Förster, S.; Weller, H. J. Am. Chem. Soc., 2004, 126: 12984

    95. [95]

      95. Franchini, I. R.; Bertoni, G.; Falqui, A.; Giannini, C.;Wang, L. W.; Manna, L. J. Mater. Chem., 2010, 20: 1357

    96. [96]

      96. Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Chem. Mater., 1997, 9: 2544

    97. [97]

      97. Li, Y.; Cheng, G. S.; Zhang, L. D. J. Mater. Res., 2000, 15: 2305

    98. [98]

      98. Nakamura, H.; Matsui, Y. J. Am. Chem. Soc., 1995, 117: 2651

    99. [99]

      99. Cao, H. Q.; Xu, Y.; Hong, J. M.; Liu, H. B.; Yin, G.; Li, B. L.; Tie, C. Y.; Xu, Z. Adv. Mater., 2001, 13: 1393

    100. [100]

      100. Limmer, S. J.; Seraji, S.; Forbess, M. J.; Wu, Y.; Chou, T. P.; Nguyen, C.; Cao, G. Z. Adv Mater., 2001, 13: 1269

    101. [101]

      101. Nicewarner-Pen, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pen, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Science, 2001, 294: 137

    102. [102]

      102. Liang, H. P.; Guo, Y. G.; Hu, J. S.; Zhu, C. F.; Wan, L. J.; Bai, C. L. Inorg. Chem., 2005, 44: 3013

    103. [103]

      103. Chen, M.; Searson, P. C.; Chien, C. L. J. Appl. Phys., 2003, 93: 8253

    104. [104]

      104. Salem, A. K.; Chen, M.; Hayden, J.; Leong, K. W.; Searson, P. C. Nano Lett., 2004, 4: 1163

    105. [105]

      105. Pena, D. J.; Mbindyo, J. K. N.; Carado, A. J.; Mallouk, T. E.; Keating, C. D.; Razavi, B.; Mayer, T. S. J. Phys. Chem. B, 2002, 106: 7458

    106. [106]

      106. Guo, Y. G.; Wan, L. J.; Zhu, C. F.; Yang, D. L.; Chen, D. M.; Bai, C. L. Chem. Mater., 2003, 15: 664

    107. [107]

      107. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Science, 2004, 306: 1009

    108. [108]

      108. Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.;Wang, L. W.; Alivisatos, A. P. Science, 2007, 317: 355

    109. [109]

      109. Demchenko, D. O.; Robinson, R. D.; Sadtler, B.; Erdonmez, C. K.; Alivisatos, A. P.; Wang, L. W. ACS Nano, 2008, 2: 627

    110. [110]

      110. Luther, J. M.; Zheng, H.; Sadtler, B.; Alivisatos, A. P. J. Am. Chem. Soc., 2009, 131: 16851

    111. [111]

      111. Wark, S. E.; Hsia, C. H.; Son, D. H. J. Am. Chem. Soc., 2008, 130: 9550

    112. [112]

      112. Kovalenko, M. V.; Talapin, D. V.; Loi, M. A.; Cordella, F.; Hesser, G.; Bodnarchuk, M. I.; Heiss, W. Angew. Chem. Int. Edit., 2008, 47: 3029

    113. [113]

      113. Gao, X. P.; Zheng, Z. F.; Zhu, H. Y.; Pan, G. L.; Bao, J. L.; Wu, F.; Song, D. Y. Chem. Commun., 2004: 1428

    114. [114]

      114. Zhang, D. F.; Sun, L. D.; Zhang, J.; Yan, Z. G.; Yan, C. H. Crystal Growth&Design, 2008, 8: 3609

    115. [115]

      115. Zhang, T.; Dong, W. J.; Keeter-Brewer, M.; Konar, S.; Njabon, R. N.; Tian, Z. R. J. Am. Chem. Soc., 2006, 128: 10960

    116. [116]

      116. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z. R.; Jiang, Y. B. Adv. Funct. Mater., 2006, 16: 335

    117. [117]

      117. Sounart, T. L.; Liu, J.; Voigt, J. A.; Huo, M.; Spoerke, E. D.; McKenzie, B. J. Am. Chem. Soc., 2007, 129: 15786

    118. [118]

      118. Lao, J. Y.; Wen, J. G.; Ren, Z. F. Nano Lett., 2002, 2: 1287

    119. [119]

      119. Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Nat. Mater., 2004, 3: 380

    120. [120]

      120. Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna1, L.; Li, J. B.; Wang, L.W.; Alivisatos, A. P. Nature, 2004, 430: 190

    121. [121]

      121. Yang, H. G.; Zeng, H. C. J. Phys. Chem. B, 2004, 108: 819

    122. [122]

      122. Yang, H. G.; Zeng, H. C. J. Am. Chem. Soc., 2005, 127: 270

    123. [123]

      123. Zhang, D. F.; Su, L. D.; Jia, C. J.; Yan, Z. G.; Yan, C. H. J. Am. Chem. Soc., 2005, 127: 13492

    124. [124]

      124. Shi, H. T.; Qi, L. M.; Ma, J. M.; Cheng, H. M. J. Am. Chem. Soc., 2003, 125: 3450

    125. [125]

      125. Shi, H. T.; Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhu, B. Y. Adv. Mater., 2003, 15: 1647

    126. [126]

      126. Shi, H. T.; Qi, L. M.; Ma, J. M.; Wu, N. Z. Adv. Funct. Mater., 2005, 15: 442

    127. [127]

      127. Yang, D.; Qi, L. M.; Ma, J. M. Chem. Commun., 2003: 1180

    128. [128]

      128. Fan, L.; Guo, R. Crystal Growth&Design, 2008, 8: 2150

    129. [129]

      129. Shao, Y. Z.; Sun, J.; Gao, L. J. Phys. Chem. C, 2009, 113: 6566

    130. [130]

      130. Wu, J. J.; Wen, H. I.; Tseng, C. H.; Liu, S. C. Adv. Funct. Mater., 2004, 14: 806

    131. [131]

      131. Yang, H. G.; Zeng, H. C. Angew. Chem. Int. Edit., 2004, 43: 5930

    132. [132]

      132. Gu, Z. J.; Zhai, T. Y.; Gao, B. F.; Sheng, X. H.; Wang, Y. B.; Fu, H. B.; Ma, Y.; Yao, J. N. J. Phys. Chem. B, 2006, 110: 23829

    133. [133]

      133. Liu, B.; Zeng, H. C. J. Am. Chem. Soc., 2004, 126: 8124

    134. [134]

      134. Liu, B.; Zeng, H. C. J. Am. Chem. Soc., 2004, 126: 16744

    135. [135]

      135. Ye, L. N.;Wu, C. Z.; Guo, W.; Xie, Y. Chem. Commun., 2006: 4738

    136. [136]

      136. Wang, N.; Cao, X.; He, L.; Zhang, W.; Guo, L.; Chen, C. P.; Wang, R. M.; Yang, S. H. J. Phys. Chem. C, 2008, 112: 365

    137. [137]

      137. Zhou, W.; Yao, M.; Guo, L.; Li, Y. M.; Li, J. H.; Yang, S. H. J. Am. Chem. Soc., 2009, 131: 2959

    138. [138]

      138. Cho, K. S.; Talapin, D. V.; Gaschler,W.; Murray, C. B. J. Am. Chem. Soc., 2005, 127: 7140

    139. [139]

      139. Liu, B.; Zeng, H. C. J. Am. Chem. Soc., 2005, 127: 18262

    140. [140]

      140. Chen, S. F.; Yu, S. H.; Wang, T. X.; Jiang, J.; Colfen, H.; Hu, B.; Yu, B. Adv. Mater., 2005, 17: 1461

    141. [141]

      141. Zhu, J. H.; Yu, S. H.; Xu, A. W.; Colfen, H. Chem. Commun., 2009: 1106

    142. [142]

      142. Liu, B.; Yu, S. H.; Li, L. J.; Zhang, Q.; Zhang, F.; Jiang, K. Angew. Chem. Int. Edit., 2004, 43: 4745

    143. [143]

      143. Zhou, Y. X.; Zhang, Q.; ng, J. Y.; Yu, S. H. J. Phys. Chem. C, 2008, 112: 13383


  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    7. [7]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    14. [14]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    20. [20]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

Metrics
  • PDF Downloads(2655)
  • Abstract views(3772)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return