Citation: HE Yong, TANG Zi-Long, ZHANG Zhong-Tai. Preparation and Electrochemical Performance of H2Ti2O5·H2O/Cr2O3 Nanotubes as AnodeMaterials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2962-2966. doi: 10.3866/PKU.WHXB20101101 shu

Preparation and Electrochemical Performance of H2Ti2O5·H2O/Cr2O3 Nanotubes as AnodeMaterials for Lithium-Ion Batteries

  • Received Date: 25 June 2010
    Available Online: 6 September 2010

    Fund Project: 国家高技术研究发展计划项目(863) (2007AA03Z235)资助 (863) (2007AA03Z235)

  • One problem that limits the rate capabilities of lithium-ion batteries is that despite the small size of the nanocrystalline particles in the electrode material, the crystalline structure might collapse during repetitive Li+ intercalation and extraction leading to the deterioration of charge and discharge performance under high currents. The prevention of this destruction has been attempted by substituting constituent atoms with other atoms to stabilize the structure in various transition metal oxide systems. In this work, H2Ti2O5·H2O/Cr2O3 compounds with nanotubes morphology were prepared by low temperature alkali-hydrothermal processing from anatase-type TiO2 with the addition of 5% (w) Cr2O3. The crystal structure and morphology of the as-prepared H2Ti2O5·H2O/Cr2O3 nanotubes were investigated by X-ray diffraction and transmission electron microscopy, respectively. Electrochemical lithium insertion cycling tests showed excellent cycling stability and an improved rate capability. The capacity of the first cycle was 288 mAh·g-1, and over 145 mAh·g-1 capacity remained after 120 cycles at 150 mA·g-1. At a current of 1500 mA·g-1, the capacity of the first cycle was 178 mAh·g-1. Over 80 mAh·g-1 capacity remained after 600 cycles at 1500 mA·g-1; furthermore, the capacity could come back to 150 mAh·g-1 at 150 mA·g-1 after 600 cycles at 1500 mA·g-1, which was close to the result for the cell that was immediately discharged/charged at 150 mA·g-1. The Cr2O3 particles, as the second phase, can improve the structural stability and high-rate capability of the H2Ti2O5·H2O nanotubes. These novel one-dimensional nanostructured materials may find promising applications in lithium-ion batteries and in electrochemical cells.

     

  • 加载中
    1. [1]

      1. Pell,W. G.; Conway, B. E. J. Power Sources, 2004, 136: 334

    2. [2]

      2. Rudge, A.; Raistrick, I.; ttesfeld, S.; Ferraris, J. P. Electrochim. Acta, 1994, 39: 273

    3. [3]

      3. Rudge, A.; Davey, J.; Raistrick, I.; ttesfeld, S.; Ferraris, J. P. J. Power Sources, 1994, 47: 89

    4. [4]

      4. Burke, A. J. Power Sources, 2000, 91: 37

    5. [5]

      5. Frackowiak, E.; Beguinb, F. Carbon, 2001, 39: 937

    6. [6]

      6. Holland, C. E.; Weidner, J. W.; Dougal, R. A.;White, R. E. J. Power Sources, 2002, 109: 32

    7. [7]

      7. Sikha, G.; Popov, B. N. J. Power Sources, 2004, 134: 130

    8. [8]

      8. Zheng, J. P. J. Electrochem. Soc., 2003, 150: A484

    9. [9]

      9. Dougal, R. A.; Liu, S.; White, R. E. IEEE Trans. Comp., 2002, 25: 120

    10. [10]

      10. Yuan, A. B.; Zhang, Q. L. Electrochem. Commun., 2006, 8: 1173

    11. [11]

      11. Cheng, L.; Li, H. Q.; Xia, Y. Y. J. Solid State Electrochem., 2006, 10: 405

    12. [12]

      12. Wang, Y. G.; Yu, L.; Xia, Y. Y. J. Electrochem. Soc., 2006, 153: A743

    13. [13]

      13. Machida, K.; Suematsu, S.; Tamamitsu, K. Electrochemistry, 2007, 75: 601

    14. [14]

      14. An, L. P.; Li, G. R.; Hu, T.; Gao, X. P.; Shen, P. W. Chin. J. Inorg. Chem., 2008, 24: 931 [安丽平, 李国然,胡涛,高学平, 申泮文.无机化学学报, 2008, 24: 931]

    15. [15]

      15. Li, J. R.; Tang, Z. L.; Zhang, Z. T. Electrochem. Commun., 2005, 7: 62

    16. [16]

      16. Zukalova, M.; Kalbac, M.; Kavan, L.; Exnar, I.; Graetzel, M. Chem. Mater., 2005, 17: 1248


  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(1427)
  • Abstract views(2529)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return