Citation: WU Wei-Kang, WANG Jia-Li, LIU Su-Qin, HUANG Ke-Long, LIU Yan-Fei. Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2915-2919. doi: 10.3866/PKU.WHXB20101028 shu

Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)

  • Received Date: 14 May 2010
    Available Online: 17 September 2010

    Fund Project: 国家自然科学基金(20976197) (20976197)高等学校博士学科点专项科研基金(20090162120013)资助项目 (20090162120013)

  • The thermal decomposition kinetics of the novel terpolymer, poly(propylene carbonate maleate) (PPCMA), was investigated using thermogravimetric (TG) analysis at different heating rates. A new computational method called nonlinear approximation (NLA) is introduced in this work. The Flynn-Wall-Ozawa (FWO), Tang, Kissinger-Akahira- Sunose (KAS), and NLA methods were used to calculate the apparent activation energy (Ea). The results show that the NLA method is ideal for Ea calculations because of its simpler and more appropriate analysis process. It does, however, give slightly higher average relative errors for Ea compared to the other typical model-free methods. Calculations using the solid-state reaction model-fitting method indicated that the thermal decomposition process was composed of multiple mechanisms. For the whole decomposition process, the values of Ea were between 70 and 135 kJ·mol-1, and the pre-exponential factor (A) varied from5.24×104 to 9.89×107 min-1. The differences in Ea also explain the differences in decomposition temperature between poly(propylene carbonate) (PPC) and PPCMA.

     

  • 加载中
    1. [1]

      1. Santer, B. D.; Taylor, K. E.;Wigley, T. M. L.; Johns, T. C.; Jones, P. D.; Karoly, D. J.; Mitchell, J. F. B.; Oort, A. H.; Penner, J. E.; Ramaswamy, V.; Schwarzkopf, M. D. Nature, 1996, 382: 39

    2. [2]

      2. Meehl, G. A.; Washington,W. M. Nature, 1996, 382: 56

    3. [3]

      3. Broecker,W. S. Science, 1997, 278: 1582

    4. [4]

      4. Kacholia, K.; Reck, R. A. Climatic Change, 1997, 35: 53

    5. [5]

      5. Beckman, E. J. Science, 1999, 283: 946

    6. [6]

      6. Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Polym. Lett., 1969, 7: 287

    7. [7]

      7. Darensbourg, D. J.; Mattew, W. H. Macromolecules, 1995, 28: 7577

    8. [8]

      8. Zhang, N. Y.; Chen, L. B.; Yang, S. Y.; Yu, A. F.; He, S. J. Acta Polym. Sin., 2000: 741

    9. [9]

      9. Plesse, C.; Vidal, F.; Randriamahazaka, H.; Teyssi佴, D.; Chevrot, C. Polymer, 2005, 46: 7771

    10. [10]

      10. Jiang, G. H.; Wang, L.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2006, 47: 12

    11. [11]

      11. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2005, 46: 9501

    12. [12]

      12. Lu, L. B.; Huang, K. L. J. Polym. Sci. Pol. Chem., 2005, 43: 2468

    13. [13]

      13. Liu, Y. F.; Huang, K. L.; Peng, D. M.; Wu, H. Polymer, 2006, 47: 8453

    14. [14]

      14. Flynn, J. H.;Wall, L. A. J. Res. Nat. Bur. Stand. Sect. A, 1966, 70: 487

    15. [15]

      15. Ozawa, T. B. Chem. Soc. Jpn., 1965, 38: 1881

    16. [16]

      16. Kissinger, H. E. Anal. Chem., 1957, 29: 1702

    17. [17]

      17. Akahira, T.; Sunose, T. Res. Rep. Chiba. Inst. Technol., 1971, 16: 22

    18. [18]

      18. Tang, W. J.; Liu, Y. W.; Zhang, H.;Wang, C. X. Thermochim. Acta, 2003, 408: 39

    19. [19]

      19. Tang, W. J.; Chen, D. H.; Wang, C. X. AICHE J., 2006, 52: 2211

    20. [20]

      20. Quan, Z.; Min, J.; Zhou, Q.; Xie, D.; Liu, J.; Wang, S.; Zhao, X.; Wang, F. Macromol. Symp., 2003, 195: 281

    21. [21]

      21. Vyazovkin, S. J. Comput. Chem., 2001, 22: 178

    22. [22]

      22. Senum, G. I.; Yang, R. T. J. Therm. Anal. Calorim., 1977, 11: 445

    23. [23]

      23. Vyazovkin, S. Thermochim. Acta, 2000, 355: 155

    24. [24]

      24. Opfermann, J. R.; Hammersheim, H. J. Thermochim. Acta, 2003, 397: 1

    25. [25]

      25. Sahin, O.; Tas, E.; Dolas, H. J. Therm. Anal. Calorim., 2007, 89: 123

    26. [26]

      26. Liu, B. Y.; Zhao, X. J.; Wang, X. H.;Wang, F. S. J. Appl. Polym. Sci., 2003, 90: 947

    27. [27]

      27. Vyazovkin, S.; Sbirrazzuoli, N. Macromol. Rapid. Commun., 2006, 27: 1515

    28. [28]

      28. Coats, A. W.; Redfern, J. P. J. Polym. Sci. Polym. Lett., 1965, 3: 917

    29. [29]

      29. Coats, A. W.; Redfern, J. P. Nature, 1964, 201: 68

    30. [30]

      30. Jankovic', B.; Adnad-evic', B.; Jovanovic', J. Thermochim. Acta, 2007, 452: 106


  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(1360)
  • Abstract views(3540)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return