Citation: LIU Tian-Qing, SUN Wei, SUN Xiang-Yu, AI Hong-Ru. Effect of Hierarchical Architecture of Super-Hydrophobic Surface on the Condensed Drop's Final State[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2989-2996. doi: 10.3866/PKU.WHXB20101025 shu

Effect of Hierarchical Architecture of Super-Hydrophobic Surface on the Condensed Drop's Final State

  • Received Date: 29 April 2010
    Available Online: 13 September 2010

    Fund Project: 国家自然科学基金(50876015)资助项目 (50876015)

  • The interface free energy of a local condensate from the growth and combination of numerous initial condensation nuclei was calculated during its shape changes from an early flat shape to a Wenzel or Cassie state on the super-hydrophobic surface (SHS). The final state of the condensed drop was determined according to whether the interface free energy continuously decreased or it had a minimum value. Our calculations indicate that condensation drops on a surface only with micro roughness display Wenzel state because the interface free energy curve of a condensed drop first decreases and then increases, existing a minimum value corresponding to Wenzel drop. On a surface with appropriate hierarchical roughness, however, the interface energy curve of a condensed drop will constantly decline until it reaches the Cassie state. Therefore, a condensed drop on a hierarchical roughness surface can spontaneously reach the Cassie state. In addition, the states and apparent contact angles of condensed drops on a SHS with different structural parameters were calculated and compared with experimental observations. Results show that the calculated condensed drop states agree well with the experimental results. It can be concluded that micro and nano hierarchical roughness is the key structural factor responsible for sustaining condensed drops in the Cassie state on a SHS.

     

  • 加载中
    1. [1]

      1. Wier, K. A.; McCarthy, T. J. Langmuir, 2006, 22(6): 2433

    2. [2]

      2. Narhe, R. D.; Beysens, D. A. Langmuir, 2007, 23(12): 6486

    3. [3]

      3. Jung, Y. C.; Bhushan, B. Journal of Microscopy, 2008, 229(1): 127

    4. [4]

      4. Narhe, R. D.; Beysens, D. A. Phys. Rev. Lett., 2004, 93(7): 076103

    5. [5]

      5. Narhe, R. D.; Beysens, D. A. Europhys. Lett., 2006, 75(1): 98

    6. [6]

      6. Dorrer, C.; Ruhe, J. Langmuir, 2007, 23(7): 3820

    7. [7]

      7. Chen, X. L.; Lu, T. Science in China Series G-Physics Mechanics and Astronomy, 2009, 52(2): 233

    8. [8]

      8. Song, Y. J.; Ren, X. G.; Ren, S. M.; Wang, H. Journal of Engineering Thermophysics, 2007, 28(1): 95 [宋永吉,任晓光, 任绍梅,王虹. 工程热物理学报, 2007, 28(1): 95]

    9. [9]

      9. Chen, L.; Liang, S. Q.; Yan, R. S.; Cheng, Y. J.; Huai, X. L.; Chen, S. L. Journal of Thermal Science, 2009, 18(2): 160

    10. [10]

      10. Chen, C. H.; Cai, Q. J.; Tsai, C. L.; Chen, C. L.; Xiong, G. Y.; Yu, Y.; Ren, Z. F. Appl. Phys. Lett., 2007, 90(17): 173108

    11. [11]

      11. Dorrer, C.; Ruhe, J. Advanced Materials, 2008, 20(1): 159

    12. [12]

      12. Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; McKinley, G. H.; Gleason, K. K. Nano Letters, 2003, 3(12): 1701

    13. [13]

      13. Barbieri, L.; Wagner, E.; Hoffmann, P. Langmuir, 2007, 23: 1723

    14. [14]

      14. Yamamoto, K.; Ogata, S. Journal of Colloid and Interface Science, 2008, 326(2): 471

    15. [15]

      15. Li, W.; Amirfazli, A. Journal of Colloid and Interface Science, 2005, 292(1): 195

    16. [16]

      16. Li, W.; Amirfazli, A. Advances in Colloid and Interface Science, 2007, 132(2): 51

    17. [17]

      17. Li, W.; Cui, X. S.; Fang, G. P. Langmuir, 2010, 26(5): 3194

    18. [18]

      18. Carbone, G.; Mangialardi, L. The European Physical Journal E, 2005, 16(1): 67

    19. [19]

      19. Werner, O.; Wagberg, L.; Lindstrom, T. Langmuir, 2005, 21(26): 12235

    20. [20]

      20. Patankar, N. A. Langmuir, 2004, 20(17): 7097

    21. [21]

      21. Patankar, N. A. Langmuir, 2004, 20(19): 8209

    22. [22]

      22. Zheng, Y. M.; Han, D.; Zhai, J.; Jiang, L. Appl. Phys. Lett., 2007, 92(8): 084106

    23. [23]

      23. Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang, W. S.; Deng, T. Appl. Phys. Lett., 2009, 95(9): 094101


  • 加载中
    1. [1]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    2. [2]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    6. [6]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    20. [20]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

Metrics
  • PDF Downloads(1219)
  • Abstract views(3870)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return