Citation: WANG Jie, ZHUANG Hui-Zhao, XUE Cheng-Shan, LI Jun-Lin, XU Peng. Structure and Formation Mechanism of Sn-Doped ZnO Nanoneedles[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2840-2844. doi: 10.3866/PKU.WHXB20101024 shu

Structure and Formation Mechanism of Sn-Doped ZnO Nanoneedles

  • Received Date: 27 June 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金重大研究项目(90201025, 90301002)资助 (90201025, 90301002)

  • We synthesized Sn -doped ZnO nanoneedles on Si(111) substrates in two steps: sputtering and thermal oxidation. First, a thin layer of the Sn :Zn films was deposited onto the Si(111) substrates ina JCK -500A radio -frequency magnetron sputtering system. Sn-doped ZnO nanoneedles were then grown by simple thermal oxidation of the as-deposited films at 650 oC in Ar atmosphere. The structural, componential, and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high -resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy. The results reveal that the ZnO nanoneedles doped with 2.5%(x, atomic ratio) Sn are single crystalline with a wurtzite hexa nal structure. The lengths of the grown nanoneedles vary between 1 and 3μm. The root diameters of the needles range between 200 and 500 nm while the tips have an average diameter of about 40 nm. Moreover, most of the Sn-doped ZnO nanoneedles are of high crystal quality. Room temperature PL spectroscopy shows a blue-shift from the bulk bandgap emission, which can be attributed toa Sn composition in the nanoneedles as detected by EDX. Based on the reaction conditions, the growth mechanism of the Sn-doped ZnO nanoneedles was also discussed.

  • 加载中
    1. [1]

      1. Iijima, S. Nature, 1991, 354: 56

    2. [2]

      2. Pan, Z. W.; Dai, Z. R.;Wang, Z. L. Science, 2001, 291: 1947

    3. [3]

      3. Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, X. M.; Yang, L. L.; Liu, Y.; Lang, J. H.; Gao, M. J. Alloy. Compd., 2010, 489: 51

    4. [4]

      4. Qi, J. J.; Yang, Y.; Liao, Q. L.; Huang, Y. H.; Liu, J.; Zhang, Y. Acta Phys. -Chim. Sin., 2009, 25: 1721 [齐俊杰, 杨亚,廖庆 亮, 黄运华,刘娟,张跃.物理化学学报, 2009, 25: 1721]

    5. [5]

      5. Xing, Y. J.; Xi, Z. H.; Zhang, X. D.; Song, J. H.; Wang, R. M.; Xu, J.; Xue, Z. Q.; Yu, D. P. Appl. Phys. A, 2005, 80: 1527

    6. [6]

      6. Ren, X. L.; Han, D.; Chen, D.; Xia, H. L.; Wang, D.; Tang, F. Q. Acta Phys. -Chim. Sin., 2005, 21: 1419 [任湘菱,韩冬, 陈东,夏海龙, 王冬, 唐芳琼.物理化学学报, 2005, 21: 1419]

    7. [7]

      7. Wang, X. D.; Ding, Y.; Summers, C. J.;Wang, Z. L. J. Phys. Chem. B, 2004, 108: 8773

    8. [8]

      8. Liu, D. F.; Xiang, Y. J.; Zhang, Z. X.;Wang, J. X.; Gao, Y.; Song, L.; Liu, L. F.; Dou, X. Y.; Zhao, X. W.; Luo, S. D.; Wang, C. Y.; Zhou, W. Y.; Wang, G.; Xie, S. S. Nanotechnology, 2005, 16: 2665

    9. [9]

      9. Park, W. I.; Yi, G. C.; Kim, M.; Pennycook, S. J. Advanced Materials, 2002, 14: 1841

    10. [10]

      10. Gao, P. X.; Wang, Z. L. Appl. Phys. Lett., 2004, 84: 2883

    11. [11]

      11. Yousefi, R.; Kamaluddin, B. Applied Surface Science, 2009, 255: 9376

    12. [12]

      12. Lin, D. D.; Wu, H.; Pan, W. Advanced Materials, 2007, 19: 3968

    13. [13]

      13. Pan, G. H.; Zhang, Q. F.; Zhang, J. Y.; Wu, J. L. Acta Phys. -Chim. Sin., 2006, 22: 1431 [潘光虎,张琦锋, 张俊艳,吴锦雷.物理化 学学报, 2006, 22: 1431]

    14. [14]

      14. Liu, J.; Zhang, Y.; Qi, J. J.; He, J.; Huang, Y. H.; Zhang, X. M. Acta Phys. -Chim. Sin., 2006, 22: 38 [刘娟,张跃,齐俊杰, 贺建,黄运华, 张晓梅. 物理化学学报, 2006, 22: 38]

    15. [15]

      15. Chen, H. S.; Qi, J. J.; Huang, Y. H.; Liao, Q. L.; Zhang, Y. Acta Phys. -Chim. Sin., 2007, 23: 55 [陈红升, 齐俊杰,黄运华,廖庆 亮,张跃.物理化学学报, 2007, 23: 55]

    16. [16]

      16. Wei, Q.; Li, M. K.; Yang, Z.; Cao, L.; Zhang,W.; Liang, H. W. Acta Phys. -Chim. Sin., 2008, 24: 793 [魏强,李梦轲, 杨志, 曹璐,张威, 梁红伟.物理化学学报, 2008, 24: 793]

    17. [17]

      17. Yang, Y.; Qi, J. J.; Zhang, Y.; Liao, Q. L.; Tang, L. D.; Qin, Z. Applied Physics Letters, 2008, 92: 183117

    18. [18]

      18. Deng, R.; Zhang, X. T.; Zhang, E.; Liang, Y.; Liu, Z.; Xu, H. Y.; Hark, S. K. J. Phys. Chem. C, 2007, 111: 13013

    19. [19]

      19. Su, Y.; Li, L.; Chen, Y. Q.; Zhou, Q. T.; Gao, M.; Chen, Q.; Feng, Y. Journal of Crystal Growth, 2009, 311: 2466

    20. [20]

      20. Li, S. Y.; Lin, P.; Lee, C. Y.; Tseng, T. Y.; Huang, C. J. J. Phys. D- Appl. Phys., 2004, 37: 2274

    21. [21]

      21. Fang, X. S.; Ye, C. H.; Zhang, L. D.; Li, Y.; Xiao, Z. D. Chemistry Letters, 2005, 34: 436

    22. [22]

      22. Ortega, Y.; Fern佗ndez, P.; Piqueras, J.; Piqueras, J. Nanotechnology, 2007, 18: 115606

    23. [23]

      23. Bougrine, A.; Hichou, A. E.; Addou, M.; Ebothe, J.; Kachouane, A.; Troyon, M. Mater. Chem. Phys., 2003, 80: 438

    24. [24]

      24. Wang, D. X.; Zhuang, H. Z.; Xue, C. S.; Shen, J. B.; Liu, H. Materials Letters, 2009, 63: 370

    25. [25]

      25. Panda, S. K.; Singh, N.; Pal, S.; Jacob, C. J. Mater. Sci.-Mater. Electron., 2009, 20: 771


  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    16. [16]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    17. [17]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    18. [18]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    19. [19]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    20. [20]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

Metrics
  • PDF Downloads(1356)
  • Abstract views(3103)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return