Citation: DU Huan, WANG Sheng, LIU Lian-Lian, LIU Zhong-Xiang, LI Zhen, LU Nan, LIU Fu-Sheng. Preparation, Characterization and Photocatalytic Property of p-CoO/n-CdS Compound Semiconductor Photocatalyst[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2726-2732. doi: 10.3866/PKU.WHXB20101023 shu

Preparation, Characterization and Photocatalytic Property of p-CoO/n-CdS Compound Semiconductor Photocatalyst

  • Received Date: 17 May 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(50876047)资助项目 (50876047)

  • The photocatalysts CdS and p-n coupled semiconductor photocatalysts CoO/CdS(p-CoO/n-CdS) were prepared using cadmium acetate, lauryl mercaptan, cobalt acetate, and stearic acid by a new method. The structural and optical properties of CdS and p-CoO/n-CdS were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM),N2 adsorption -desorption, and ultraviolet -visible diffuse reflection spectroscopy (UV-Vis DRS). The results showed that the particles of CoO compactly connected with the particles of CdS in the p-CoO/n-CdS. The particle size of CdS was about 100 nm and the crystalloid of CdS was hexa n spiauterite. The particle size of CoO was about 10 nm, and the distribution of particles size was uniform. The results of UV-Vis DRS showed that the nano-CdS particles could absorb the visible light at wavelengths between 400 and 550 nm which is characteristic absorption of CdS in the visible region. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic degradation of methyl orange (MO). The results showed that the photocatalytic activity of p-CoO/n-CdS was much higher, which was 2.2 times than that of CdS on the photocatalytic degradation of methyl orange. The results of photocorrosion test showed that the photocorrosion rate of CdS was two or more times than that of p-CoO/n-CdS, which indicated that CoO coupled with CdS could effectively restrain the photocorrosion of CdS.

  • 加载中
    1. [1]

      1. Fujishima, A.; Honda, K. Nature, 1972, 238: 37

    2. [2]

      2. Khaselev, O.; Turner, J. A. Science, 1998, 280: 425

    3. [3]

      3. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science, 2001, 293: 269

    4. [4]

      4. Zou, Z. G.; Ye, J.; Sayama, K.; Arakawa, H. Nature, 2001, 414: 625

    5. [5]

      5. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Science, 2002, 297: 2243

    6. [6]

      6. Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature, 2006, 440: 295

    7. [7]

      7. Fox, M. A.; Dulay, M. T. Chem. Rev., 1993, 93: 341

    8. [8]

      8. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev., 1995, 95: 69

    9. [9]

      9. Chen, D.W.; Liu, Y. Q.; Yi, X. J.; Xu, G. Z. Acta Phys. -Chim. Sin., 2001, 17(9): 781 [陈德文,刘延秋,易筱筠, 徐广智.物理 化学学报, 2001, 17(9): 781]

    10. [10]

      10. Dhere, N. G.; Jahagirdar, A. H. Thin Solid Films, 2005, 480-481: 462

    11. [11]

      11. Peng, F.; Chen, S. H.; Zhang, L.; Wang, H. J.; Xie, Z. Y. Acta Phys.- Chim. Sin., 2005, 21(9): 944 [彭峰, 陈水辉,张雷,王红娟, 谢志勇.物理化学学报, 2005, 21(9): 944]

    12. [12]

      12. ndal, M. A.; Hameed, A.; Yamani, Z. H.; Suwaiyan, A. Appl. Catal. A-Gen., 2004, 268: 159

    13. [13]

      13. Wang, G. Y.;Wang, Y. J.; Zhao, X. Q.; Song, B. J. Acta Phys.- Chim. Sin., 2005, 21(l): 84 [王桂赟,王延吉,赵新强, 宋宝俊. 物理化学学报, 2005, 21(l): 84]

    14. [14]

      14. Fang, S. M.; Ou, Y.; Lin, J. D.; Liao, D. W. Acta Phys. -Chim. Sin., 2007, 23(4): 601 [方舒玫, 欧延,林敬东,廖代伟. 物理化学 学报, 2007, 23(4): 601]

    15. [15]

      15. Datta, A.; Priyam, A.; Bhattacharyya, S. N.; Mukherjea, K. K.; Saha, A. J. Colloid Interface Sci., 2008, 322: 128

    16. [16]

      16. Jang, J. S.; Ham, D. J.; Lakshminarasimhan, N.; Choi, W. Y.; Lee, S. J. Appl. Catal. A-Gen., 2008, 346: 149.

    17. [17]

      17. Ma, G. J.; Yan, H. J.; Shi, J. Y.; Zong, X.; Lei, Z. B.; Li, C. J. Catal., 2008, 260: 134

    18. [18]

      18. Ranjit, K. T.; Viswanathan, B. J. Photochem. Photobiol. A, 2003, 154: 299

    19. [19]

      19. El Zayat, M. Y.; Saed, A. O.; El-Dessouki, M. S. Sol. Energy Mater. Sol. Cells, 2002, 71: 27

    20. [20]

      20. Yamada, S.; Nosaka, A. Y.; Nosaka, Y. J. Electroanal. Chem., 2005, 585: 105

    21. [21]

      21. Zhang, Y. J.; Zhang, L. Appl. Surf. Sci., 2009, 255: 4863


  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(1942)
  • Abstract views(3526)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return