Citation: QIAO Gui-Min, REN Zhen-Jia, ZHANG Jun, HU Song-Qing, YAN You-Guo, TI Yang. Molecular Dynamics Simulation of Corrosive Medium Diffusion in Corrosion Inhibitor Membrane[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3041-3046. doi: 10.3866/PKU.WHXB20101020 shu

Molecular Dynamics Simulation of Corrosive Medium Diffusion in Corrosion Inhibitor Membrane

  • Received Date: 6 May 2010
    Available Online: 9 September 2010

    Fund Project: 中国石油中青年创新基金(07E1021, 2008D-5006-02) (07E1021, 2008D-5006-02)山东省自然科学基金(Y2006B35)资助项目 (Y2006B35)

  • The corrosion inhibition mechanism of four 1-R1-2-undecyl-imidazoline inhibitors (R1: CH2COOH (A), CH2CH2OH (B), CH2CH2NH2 (C), H (D)) for carbon steel against carbon dioxide corrosion was investigated by molecular dynamics simulation, from the aspect of corrosive medium particle (H2O, H3O+, and HCO-3) diffusion to the metal surface hindered by the corrosion inhibitor membrane. The corrosion inhibition performance of these compounds was also evaluated by the theoretical method. The diffusion coefficients in various corrosion inhibitor membranes, the interaction energies between particles and membranes, and the self-diffusion performance of the membranes indicated that the four imidazoline inhibitors could form stable membranes, which could effectively limited the diffusion of corrosive medium particles to the metal surface, in order to inhibit or delay corrosion. With an increase in the polarity of the hydrophilic chain (R1), the ability of the membrane to hinder particle diffusion enhanced. The membrane was better at limiting the diffusion of charged particles (H3O+ and HCO-3) than that of a neutral particle (H2O). Based on the above analysis, we found that theoretically the corrosion inhibition performance of the four imidazoline inhibitors decreased as follows: A>B>C>D, which agrees with previous experimental results.

     

  • 加载中
    1. [1]

      1. Zhang, T. S. Corrosion inhibitor. Beijing: Chemical Industry Press, 2008: 131-143 [张天胜.缓蚀剂.北京: 化学工业出版社, 2008: 131-143]

    2. [2]

      2. Jovancicevic, V.; Ramachandran, S.; Prince, P. Corrosion, 1998, 55: 449

    3. [3]

      3. Zhang, G. A.; Chen, C. F.; Lu, M. X.; Chai, C.W.; Wu, Y. S. Mater. Chem. Phys., 2007, 105: 331

    4. [4]

      4. Liu, X. Y.; Chen, S. H.; Tian, F.; Ma, H. Y.; Shen, L. X.; Zhai, H. Y. Surf. Interface Anal., 2007, 39: 317

    5. [5]

      5. Zhang, Z.; Chen, S. H.; Li, Y. H.; Li, S. H.; Wang, L. Corrosion Sci., 2009, 51: 291

    6. [6]

      6. Zhang, J.; Du, M.; Yu, H. H.; Wang, N. Acta Phys. -Chim. Sin., 2009, 25: 525 [张静, 杜敏,于会华,王宁. 物理化学学报, 2009, 25: 525]

    7. [7]

      7. Zhang, J.; Zhao,W. M.; Guo, W. Y.; Wang, Y.; Li, Z. P. Acta Phys. -Chim. Sin., 2008, 24: 1239 [张军,赵卫民,郭文跃, 王勇,李中谱. 物理化学学报, 2008, 24: 1239]

    8. [8]

      8. Domiínguez, H. Langmuir, 2009, 25: 9006

    9. [9]

      9. Kornherr, A.; Nauer, G. E.; Sokol, A. A.; French, S. A.; Catlow, C. R. A.; Zifferer, G. Langmuir, 2006, 22: 8036

    10. [10]

      10. Huang, Y.; Liu, Q. L. Journal of Xiamen University: Nature Science, 2006, 45: 664 [黄宇,刘庆林. 厦门大学学报:自然科学版, 2006, 45: 664]

    11. [11]

      11. Zhou, J. H.; Zhu, R. X.; Zhou, J. M. Polymer, 2006, 47: 5206

    12. [12]

      12. Pan, F. S.; Peng, F. B.; Jiang, Z. Y. Chem. Eng. Sci., 2007, 62: 703

    13. [13]

      13. Yang, J. Z.; Liu, Q. L.;Wang, H. T. J.Membrane Sci., 2007, 291: 1

    14. [14]

      14. Liu, Q. Z.; Yang, D. F.; Hu, Y. D. Chem. J. Chin. Univ., 2009, 30: 568 [刘清芝, 杨登峰,胡仰栋.高等学校化学学报, 2009, 30: 568]

    15. [15]

      15. Tao, C. G.; Feng, H. J.; Zhou, J.; Lü, L. H.; Lu, X. H. Acta Phys. - Chim. Sin., 2009, 25: 1373 [陶长贵,冯海军,周健, 吕玲红, 陆小华.物理化学学报, 2009, 25: 1373]

    16. [16]

      16. Pan, F. S.; Ma, J.; Cui, L.; Jiang, Z. Y. Chem. Eng. Sci., 2009, 64: 5192

    17. [17]

      17. Liu, X.; Zheng, Y. G. Corros. Eng. Sci. Technol., 2008, 43: 87

    18. [18]

      18. Materials Studio. Revision 4.2W. San Die , USA: Accelrys Inc., 2005

    19. [19]

      19. Sun, H. J. Phys. Chem. B, 1998, 102: 7338

    20. [20]

      20. Hansal, W. E. G.; Besenhard, J. O.; Kronberger, H.; Nauer, G. E.; Zifferer, G. J. Chem. Phys., 2003, 119: 9719

    21. [21]

      21. Heermann, D. W. Computer simulation methods in theoretical physics. Trans. Qin, K. C. Beijing: Peking University Press, 1996: 42-48 [Heermann, D. W.理论物理学中的计算机模拟方法.秦克成,译. 北京: 北京大学出版社, 1996: 42-48]

    22. [22]

      22. Andersen, H. C. J. Chem. Phys., 1980, 72: 2384

    23. [23]

      23. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys., 1984, 81: 3684

    24. [24]

      24. Wu, X. H.; Xiang, J. Z. Modern materials computation and design. Beijing: Electronic Industry Press, 2002: 18-21 [吴兴惠,项金钟.现代材料计算与设计教程. 北京: 电子工业出版社, 2002: 18-21]

    25. [25]

      25. Leach, A. P. Molecular modeling: principles and application. England: Person Education Limited, 2001: 324-334

    26. [26]

      26. Lin, Y. C.; Chen, X. Chem. Phys. Lett., 2005, 412: 322

    27. [27]

      27. McCall, D. W.; Douglass, C. D. J. Chem. Phys., 1965, 69: 2001

    28. [28]

      28. Trappeniters, N. J.; Gerritsma, C. J.; Oosting, P. H. Phys. Lett., 1965, 18: 256

    29. [29]

      29. Aouizerat-Elarby, A.; Dez, H.; Prevel, B.; Jal, J. F.; Bert, J.; Dupuy-Philon, J. J. Mol. Liq., 2000, 84: 289

    30. [30]

      30. Zhou, L. Organic chemistry. Beijing: Science Press, 2009: 355-362 [周乐.有机化学. 北京:科学出版社, 2009: 355-362]

    31. [31]

      31. Bernard, M. C.; Duval, S.; Joiret, S.; Keddam, M.; Ropital, F.; Takenouti, H. Prog. Org. Coat., 2002, 45: 399


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    14. [14]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

Metrics
  • PDF Downloads(1365)
  • Abstract views(2954)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return