Citation: CHANG Zhao-Rong, DAI Dong-Mei, LI Bao, TANG Hong-Wei. Effect of Hydrazine on the Performance of LiNi0.5Mn1.5O4Cathode Materials[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2633-2637. doi: 10.3866/PKU.WHXB20101015 shu

Effect of Hydrazine on the Performance of LiNi0.5Mn1.5O4Cathode Materials

  • Received Date: 12 February 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(21071046) (21071046)河南省重点科技攻关项目(080102270013)资助 (080102270013)

  • Reduction pretreatment of the precursor of LiNi0.5Mn1.5O4 was carried out by adding hydrazine to a solution of NaOH during precursor synthesis. Accordingly, the effect of hydrazine on the performance of LiNi0.5Mn1.5O4 was studied by comparing the electrochemical properties of this sample with those of pristine samples (LiNi0.5Mn1.5O4 without hydrazine pretreatment). We synthesized LiNi0.5Mn1.5O4 by co-precipitation using a two-step drying method with NiSO4 and MnSO4 as raw materials. The results of electrochemical experiments show that the LiNi0.5Mn1.5O4 from the hydrazine pretreated precursor has a much higher special capacity than the pristine sample at the same charge/ discharge current density. Moreover, the former shows much better electrochemical performance at a high discharge current density. Results of powder X-ray diffraction (XRD) reveal that the LiNi0.5Mn1.5O4 from the hydrazine pretreated precursor shows a pure spinel phase (no impurity phase detected) while the pristine sample containsa minor impurity phase. Results of scanning electron microscopy (SEM) show that the crystal impurities have a layered structure and are mixed with octahedral crystals of LiNi0.5Mn1.5O4. We show that the impurity in the precursor is insoluble Na0.55Mn2O4·1.5H2O, which derives from the oxidation of Mn(OH)2 by O2 and a final transformation into Na0.7MnO2.05.

     

  • 加载中
    1. [1]

      1. Ohzuku, T.; Takeda, S.; Wanaga, M. J. Power Sources, 1999, 81-82: 90

    2. [2]

      2. Xia, H.; Tang, S. B.; Lu, L.; Meng, Y. S.; Ceder, G. Electrochim. Acta, 2007, 52: 2822

    3. [3]

      3. Aklalouch, M.; Amarilla, J. M.; Rojas, R. M.; Saadoune, I.; Rojo, J. M. J. Power Sources, 2008, 185: 501

    4. [4]

      4. Wang, Y. J.; Dai, K. H.; Feng, H. J.; Xie, Y. T.; Qi, L. Acta Phys.- Chim. Sin., 2007, 23: 1927 [王银杰,代克化,冯华君, 谢燕婷, 其鲁.物理化学学报, 2007, 23: 1927]

    5. [5]

      5. Xu, M. W.; Su, Z.; Ye, S. H.;Wang, Y. L. Acta Phys.-Chim. Sin., 2009, 25: 1232 [徐茂文,粟智,叶世海, 王永龙.物理化学学 报, 2009, 25: 1232]

    6. [6]

      6. Fan, W. F.; Qu, M. Z.; Peng, G. C. Chin. J. Inorg. Chem., 2009, 25: 124 [范未峰,瞿美臻,彭工厂.无机化学学报, 2009, 25: 124]

    7. [7]

      7. Yin, T. F.; Yue, C. B.; He, X. J. Chinese Battery Industry, 2008, 13: 262 [伊廷锋, 岳彩波, 何孝军.电池工业, 2008, 13: 262]

    8. [8]

      8. Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. J. Electrochem. Soc., 2004, 151: A53

    9. [9]

      9. Caballero, A.; Hernan, L.; Melero, M.; Morales, J.; Angulo, M. J. Electrochem. Soc., 2005, 152: A6

    10. [10]

      10. Park, S. H.; Sun, Y. K. Electrochim. Acta, 2004, 50: 431

    11. [11]

      11. Oh, S. H.; Jeon, S. H.; Cho, W. I.; Kim, C. S.; Cho, B. W. J. Alloys Compd., 2008, 452: 389

    12. [12]

      12. Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J. R. J. Electrochem. Soc., 1997, 144: 205

    13. [13]

      13. Fang, H. S.; Wang, Z. X.; Zhang, B.; Li, X. H.; Li, G. S. Electrochem. Commun., 2007, 9: 1077

    14. [14]

      14. Chang, Z. R.; Chen, Z. J.; Wu, F.; Tang, H. W.; Zhu, Z. H. Acta Phys.-Chim. Sin., 2008, 24: 513 [常照荣,陈中军,吴锋, 汤宏 伟, 朱志红.物理化学学报, 2008, 24: 513]

    15. [15]

      15. Chang, Z. R.; Qi, X.; Wu, F. J. Func. Mater., 2006, 20: 896 [常照荣,齐霞,吴锋.功能材料, 2006, 20: 896]

    16. [16]

      16. Tang, H. W.; Zhu, Z. H.; Chang, Z. R.; Chen, Z. J. Acta Phys.- Chim. Sin., 2007, 23: 1265 [汤宏伟,朱志红,常照荣, 陈中军. 物理化学学报, 2007, 23: 1265]

    17. [17]

      17. Kalyani, P.; Kalaiselvi, N.; Renganathan, N. G.; Raghavan, M. Ionics, 2003, 9: 417

    18. [18]

      18. Giovannelli, F.; Chartier, T.; Autret-lamber, C.; Delorme, F, Zaghrioui,M.; Seron, A. J. Solid State Chemistry, 2009, 182(5): 1021

    19. [19]

      19. Chang, Z. R.; Chen, Z. J.; Wu, F.; Tang, H. W.; Zhu, Z. H.; Yuan, X. Z.; Wang, H. J. J. Power Sources, 2008, 185: 1408

    20. [20]

      20. Chang, Z. R.; Chen, Z. J.; Wu, F.; Tang, H. W.; Zhu, Z. H. Rare Metal Mat. Eng., 2008, 37: 1060 [常照荣,陈中军,吴锋, 汤宏伟,朱志红. 稀有金属材料与工程, 2008, 37: 1060]

    21. [21]

      21. Lee, Y. S.; Sun, Y. K.; Ota, S.; Miyashita, T.; Yoshio, M. Electrochem. Commun., 2002, 4: 989

    22. [22]

      22. Kim, J. H.; Myung, S. T.; Sun, Y. K. Electrochim. Acta, 2004, 49: 219

    23. [23]

      23. Du, G. D.; Nuli, Y. N.; Feng, Z. Z.; Wang, J. L. Acta Phys.-Chim. Sin., 2008, 24: 165 [杜国栋,努丽燕娜,冯真真,王久林. 物理 化学学报, 2008, 24: 165]

    24. [24]

      24. Kim, J. H.; Myung, S. T.; Yoon, C. S.; Kang, S. G.; Sun, Y. K. Chem. Mater., 2004, 16: 906


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    19. [19]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    20. [20]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

Metrics
  • PDF Downloads(1315)
  • Abstract views(2826)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return