Citation:
WU Xiao-Qin, ZONG Rui-Long, MU Hao-Jie, ZHU Yong-Fa. Cataluminescence Performance on Catalysts of Graphene Supported Platinum[J]. Acta Physico-Chimica Sinica,
;2010, 26(11): 3002-3008.
doi:
10.3866/PKU.WHXB20101010
-
Platinum nanoparticles supported by graphene were prepared by the colloid deposition process. The effects of particle size and loading amount of platinum particles on the cataluminescence (CTL) properties of CO have been investigated. The CTL properties and some analysis characteristics of the catalyst on other gas phase systems were explored. The results show that the Pt nanoparticles are well distributed on graphene and a faster catalytic reaction rate is apparent. The smaller particles lead to a higher CTL intensity. When the volume concentration of CO in air is below 40% (φ, volume fraction) the CTL intensity is proportional to the concentration of CO for all the catalysts (0.4%-1.6% (w, mass fraction) Pt). Among them, the catalyst containing 0.8% Pt was found to be the best. However, by increasing the CO concentration the CTL intensity of the catalysts with a low Pt loading (0.4%, 0.8%) decreased while the highly loaded (1.2%, 1.6%) catalysts continued to increase their intensity. Moreover, a higher Pt loading led to a higher CTL intensity. Under certain conditions the catalyst shows od CTL performance for CO oxidation, and ether, methanol as well as toluene show different degrees of response. No response was obtained for carbon dioxide, formaldehyde, glutaraldehyde, acetone, ethyl acetate, chloroform, and water vapor.
-
Keywords:
-
Graphene
, - Pt nanoparticles,
- Cataluminescence,
- Carbon monoxide,
- Platinumloading
-
-
-
-
[1]
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science, 2004, 306: 666
-
[2]
2. Geim, A. K.; Novoselov, K. S. Nature Materials, 2007, 6: 183
-
[3]
3. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol., 2008, 3: 101
-
[4]
4. Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L. Anal. Chem., 2009, 81: 2378
-
[5]
5. Kang, X. H.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. H. Biosensors and Bioelectronics, 2009, 25: 901
-
[6]
6. Wu, H.; Wang, J.; Kang, X. H.;Wang, C. M.; Wang, D. H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Talanta, 2009, 80: 403
-
[7]
7. Li, H. J.; Chen, J. A.; Han, S.; Niu, W. X.; Liu, X. Q.; Xu, G. B. Talanta, 2009, 79: 165
-
[8]
8. Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.; Williams, R. J. J.; Wolkenstein. T. J. Catal., 1976, 45: 137
-
[9]
9. Zhu, Y. F.; Shi, J. J.; Zhang, Z. Y.; Zhang, C.; Zhang, X. R. Anal. Chem., 2002, 74: 120
-
[10]
10. Zhou, Q.; Zhang, L.C.; Fan, H. Y.; Wu, L.; Lv, Y. Sensors and Actuators B, 2010, 144: 192
-
[11]
11. Cao, X. A.; Zhang, Z. Y.; Zhang, X. R. Sensors and Actuators B, 2004, 99: 30
-
[12]
12. Shi, J. J.; Yan, R. X.; Zhu, Y. F.; Zhang, X. R. Talanta, 2003, 6: 157
-
[13]
13. Zhang, Z. Y.; Jiang, H. J.; Xing, Z.; Zhang, X. R. Sensors and Actuators B, 2004, 102: 155
-
[14]
14. Xuan, Y. L.; Hu, J.; Xu, K. L.; Hou, X. D.; Lv, Y. Sensors and Actuators B, 2009, 136: 218
-
[15]
15. Luo, L.; Chen, H.; Zhang, L. C.; Xu, K. L.; Lv, Y. Anal. Chim. Acta, 2009, 635: 183
-
[16]
16. Jia, Y. Z.; Zhang, H. L.; Wu, L.; Lv, Y.; Hou, X. D. Microchemical Journal, 2010, 95: 359
-
[17]
17. Cao, X. A.; Wu,W. F.; Chen, N.; Peng, Y.; Liu, Y. H. Sensors and Actuators B, 2009, 137: 83
-
[18]
18. Wu, C. C.; Cao, X. A.; Wen, Q.; Wang, Z. H.; Gao, Q. Q.; Zhu, H. C. Talanta, 2009, 79: 1223
-
[19]
19. Lu, J. S.; Cao, X. A.; Pan, C. Y.; Yang, L. F.; Lai, G. B.; Chen, J. L.;Wu, C. Q. Sensors, 2006, 6: 1827
-
[20]
20. Yu, C.; Liu, G. H.; Zuo, B. L.; Tang, Y. J.; Zhang, T. Anal. Chim. Acta, 2008, 618: 204
-
[21]
21. Yang, P.; Ye, X. N.; Lau, C. W.; Li, Z. X.; Liu, X.; Lu, J. Z. Anal. Chem., 2007, 79: 1425
-
[22]
22. Li, S. F.; Li, F. P.; Rao, Z. M. Sensors and Actuators B, 2010, 145: 78
-
[23]
23. Wang, X.; Na, N.; Zhang, S. C.; Wu, Y. Y.; Zhang, X. R. J. Am. Chem. Soc., 2007, 129: 6062
-
[24]
24. Teng, F.; Xu, T. G.; Teng, Y.; Liang, S. H.; Bulgan, G.; Lin, J.; Yao,W. Q.; Zong, R. L.; Zhu, Y. F.; Zheng, T. F. Environ. Sci. Technol., 2008, 42: 3886
-
[25]
25. Bulgen, G.; Liang, S. H.; Teng, F.; Yao, W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin., 2008, 24: 205 [Bulgen G.,梁淑惠,腾飞, 姚文清,朱永法. 物理化学学报, 2008, 24: 205]
-
[26]
26. Teng, F.; Yao, W. Q.; Zhu, Y. F.; Chen, M. D.; Wang, R. H.; Mho, S. I.; Meng, D. D. J. Phys. Chem. C, 2009, 113: 3089
-
[27]
27. Na, N.; Zhang, S. C.; Wang, X.; Zhang, X. R. Anal. Chem., 2009, 81: 2092
-
[28]
28. Wu, Y. Y.; Na, N.; Zhang, S. C.; Wang, X.; Liu, D.; Zhang, X. R. Anal. Chem., 2009, 81: 961
-
[29]
29. Suslick, B. A.; Feng, L.; Suslick, K. S. Anal. Chem., 2010, 82: 2067
-
[30]
30. Comotti, M.; Li, W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc., 2006, 128: 917
-
[31]
31. Bulgan, G.; Zong, R. L.; Liang, S. H.; Yao, W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin., 2008, 24: 1547 [Bulgan G.,宗瑞隆, 梁淑惠, 姚文清,朱永法. 物理化学学报, 2008, 24: 1547]
-
[32]
32. Ummers, W. S.; Offeman, R. E. J. Am. Chem. Soc., 1958, 80: 1339
-
[33]
33. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc., 2008, 130: 5856
-
[34]
34. Alwarappan, S.; Erdem, A.; Liu, C.; Li, C. Z. J. Phys. Chem. C, 2009, 113: 8853
-
[35]
35. Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Brink, J. V. D.; Kelly, P. J. Phys. Rev. B, 2009, 79: 195425
-
[36]
36. Wang, Q. J.; Che, J. G. Phys. Rev. Lett., 2009, 103: 066802
-
[37]
37. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc., 2005, 127: 6819
-
[38]
38. Valden, M.; Lai, X.; odman, D. W. Science, 1998, 281: 1647
-
[39]
39. Che, M.; Bennett, C. O. Adv. Catal., 1989, 36: 55
-
[40]
40. Teng, F.; Yao,W. Q.; Zheng, Y. F.; Ma, Y. T.; Xu, T. G.; Gao, G. Z.; Liang, S. H.; Teng, Y.; Zhu, Y. F. Talanta, 2008, 76: 1058
-
[41]
41. Campell, C.; Ertl, G.; Kuipers, H.; Segner, J. J. Chem. Phys., 1980, 73: 5862
-
[42]
42. Wang, G. X.; Yang, J.; Park, J.; u, X. L.; Wang, B.; Liu, B.; Yao, J. J. Phys. Chem. C, 2008, 112: 8192
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[5]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[6]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[7]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[11]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[12]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[13]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[14]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[17]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[18]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[19]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[20]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(2586)
- Abstract views(3217)
- HTML views(12)