Citation: WU Xiao-Qin, ZONG Rui-Long, MU Hao-Jie, ZHU Yong-Fa. Cataluminescence Performance on Catalysts of Graphene Supported Platinum[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3002-3008. doi: 10.3866/PKU.WHXB20101010 shu

Cataluminescence Performance on Catalysts of Graphene Supported Platinum

  • Received Date: 4 June 2010
    Available Online: 27 August 2010

    Fund Project: 国家自然科学基金(20925725) (20925725)国家重点基础研究发展规划项目(973) (2007CB613303)资助 (973) (2007CB613303)

  • Platinum nanoparticles supported by graphene were prepared by the colloid deposition process. The effects of particle size and loading amount of platinum particles on the cataluminescence (CTL) properties of CO have been investigated. The CTL properties and some analysis characteristics of the catalyst on other gas phase systems were explored. The results show that the Pt nanoparticles are well distributed on graphene and a faster catalytic reaction rate is apparent. The smaller particles lead to a higher CTL intensity. When the volume concentration of CO in air is below 40% (φ, volume fraction) the CTL intensity is proportional to the concentration of CO for all the catalysts (0.4%-1.6% (w, mass fraction) Pt). Among them, the catalyst containing 0.8% Pt was found to be the best. However, by increasing the CO concentration the CTL intensity of the catalysts with a low Pt loading (0.4%, 0.8%) decreased while the highly loaded (1.2%, 1.6%) catalysts continued to increase their intensity. Moreover, a higher Pt loading led to a higher CTL intensity. Under certain conditions the catalyst shows od CTL performance for CO oxidation, and ether, methanol as well as toluene show different degrees of response. No response was obtained for carbon dioxide, formaldehyde, glutaraldehyde, acetone, ethyl acetate, chloroform, and water vapor.

     

  • 加载中
    1. [1]

      1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science, 2004, 306: 666

    2. [2]

      2. Geim, A. K.; Novoselov, K. S. Nature Materials, 2007, 6: 183

    3. [3]

      3. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol., 2008, 3: 101

    4. [4]

      4. Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L. Anal. Chem., 2009, 81: 2378

    5. [5]

      5. Kang, X. H.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. H. Biosensors and Bioelectronics, 2009, 25: 901

    6. [6]

      6. Wu, H.; Wang, J.; Kang, X. H.;Wang, C. M.; Wang, D. H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Talanta, 2009, 80: 403

    7. [7]

      7. Li, H. J.; Chen, J. A.; Han, S.; Niu, W. X.; Liu, X. Q.; Xu, G. B. Talanta, 2009, 79: 165

    8. [8]

      8. Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.; Williams, R. J. J.; Wolkenstein. T. J. Catal., 1976, 45: 137

    9. [9]

      9. Zhu, Y. F.; Shi, J. J.; Zhang, Z. Y.; Zhang, C.; Zhang, X. R. Anal. Chem., 2002, 74: 120

    10. [10]

      10. Zhou, Q.; Zhang, L.C.; Fan, H. Y.; Wu, L.; Lv, Y. Sensors and Actuators B, 2010, 144: 192

    11. [11]

      11. Cao, X. A.; Zhang, Z. Y.; Zhang, X. R. Sensors and Actuators B, 2004, 99: 30

    12. [12]

      12. Shi, J. J.; Yan, R. X.; Zhu, Y. F.; Zhang, X. R. Talanta, 2003, 6: 157

    13. [13]

      13. Zhang, Z. Y.; Jiang, H. J.; Xing, Z.; Zhang, X. R. Sensors and Actuators B, 2004, 102: 155

    14. [14]

      14. Xuan, Y. L.; Hu, J.; Xu, K. L.; Hou, X. D.; Lv, Y. Sensors and Actuators B, 2009, 136: 218

    15. [15]

      15. Luo, L.; Chen, H.; Zhang, L. C.; Xu, K. L.; Lv, Y. Anal. Chim. Acta, 2009, 635: 183

    16. [16]

      16. Jia, Y. Z.; Zhang, H. L.; Wu, L.; Lv, Y.; Hou, X. D. Microchemical Journal, 2010, 95: 359

    17. [17]

      17. Cao, X. A.; Wu,W. F.; Chen, N.; Peng, Y.; Liu, Y. H. Sensors and Actuators B, 2009, 137: 83

    18. [18]

      18. Wu, C. C.; Cao, X. A.; Wen, Q.; Wang, Z. H.; Gao, Q. Q.; Zhu, H. C. Talanta, 2009, 79: 1223

    19. [19]

      19. Lu, J. S.; Cao, X. A.; Pan, C. Y.; Yang, L. F.; Lai, G. B.; Chen, J. L.;Wu, C. Q. Sensors, 2006, 6: 1827

    20. [20]

      20. Yu, C.; Liu, G. H.; Zuo, B. L.; Tang, Y. J.; Zhang, T. Anal. Chim. Acta, 2008, 618: 204

    21. [21]

      21. Yang, P.; Ye, X. N.; Lau, C. W.; Li, Z. X.; Liu, X.; Lu, J. Z. Anal. Chem., 2007, 79: 1425

    22. [22]

      22. Li, S. F.; Li, F. P.; Rao, Z. M. Sensors and Actuators B, 2010, 145: 78

    23. [23]

      23. Wang, X.; Na, N.; Zhang, S. C.; Wu, Y. Y.; Zhang, X. R. J. Am. Chem. Soc., 2007, 129: 6062

    24. [24]

      24. Teng, F.; Xu, T. G.; Teng, Y.; Liang, S. H.; Bulgan, G.; Lin, J.; Yao,W. Q.; Zong, R. L.; Zhu, Y. F.; Zheng, T. F. Environ. Sci. Technol., 2008, 42: 3886

    25. [25]

      25. Bulgen, G.; Liang, S. H.; Teng, F.; Yao, W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin., 2008, 24: 205 [Bulgen G.,梁淑惠,腾飞, 姚文清,朱永法. 物理化学学报, 2008, 24: 205]

    26. [26]

      26. Teng, F.; Yao, W. Q.; Zhu, Y. F.; Chen, M. D.; Wang, R. H.; Mho, S. I.; Meng, D. D. J. Phys. Chem. C, 2009, 113: 3089

    27. [27]

      27. Na, N.; Zhang, S. C.; Wang, X.; Zhang, X. R. Anal. Chem., 2009, 81: 2092

    28. [28]

      28. Wu, Y. Y.; Na, N.; Zhang, S. C.; Wang, X.; Liu, D.; Zhang, X. R. Anal. Chem., 2009, 81: 961

    29. [29]

      29. Suslick, B. A.; Feng, L.; Suslick, K. S. Anal. Chem., 2010, 82: 2067

    30. [30]

      30. Comotti, M.; Li, W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc., 2006, 128: 917

    31. [31]

      31. Bulgan, G.; Zong, R. L.; Liang, S. H.; Yao, W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin., 2008, 24: 1547 [Bulgan G.,宗瑞隆, 梁淑惠, 姚文清,朱永法. 物理化学学报, 2008, 24: 1547]

    32. [32]

      32. Ummers, W. S.; Offeman, R. E. J. Am. Chem. Soc., 1958, 80: 1339

    33. [33]

      33. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc., 2008, 130: 5856

    34. [34]

      34. Alwarappan, S.; Erdem, A.; Liu, C.; Li, C. Z. J. Phys. Chem. C, 2009, 113: 8853

    35. [35]

      35. Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Brink, J. V. D.; Kelly, P. J. Phys. Rev. B, 2009, 79: 195425

    36. [36]

      36. Wang, Q. J.; Che, J. G. Phys. Rev. Lett., 2009, 103: 066802

    37. [37]

      37. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc., 2005, 127: 6819

    38. [38]

      38. Valden, M.; Lai, X.; odman, D. W. Science, 1998, 281: 1647

    39. [39]

      39. Che, M.; Bennett, C. O. Adv. Catal., 1989, 36: 55

    40. [40]

      40. Teng, F.; Yao,W. Q.; Zheng, Y. F.; Ma, Y. T.; Xu, T. G.; Gao, G. Z.; Liang, S. H.; Teng, Y.; Zhu, Y. F. Talanta, 2008, 76: 1058

    41. [41]

      41. Campell, C.; Ertl, G.; Kuipers, H.; Segner, J. J. Chem. Phys., 1980, 73: 5862

    42. [42]

      42. Wang, G. X.; Yang, J.; Park, J.; u, X. L.; Wang, B.; Liu, B.; Yao, J. J. Phys. Chem. C, 2008, 112: 8192


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    19. [19]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(2586)
  • Abstract views(3183)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return