Citation: ZHANG Xiao-Ru, LIN Yan-Hong, ZHANG Jian-Fu, HE Dong-Qing, WANG De-Jun. Photoinduced Charge Carrier Properties and Photocatalytic Activity of N-Doped TiO2 Nanocatalysts[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2733-2738. doi: 10.3866/PKU.WHXB20101007
-
Nitrogen-doped TiO2 (N-TiO2) photocatalysts with different amounts of N doping were successfully synthesized by the hydrothermal method using urea as the nitrogen source. The samples were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV -Vis DRS),X -ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The photodegradation of rhodamineB (RhB) and methyl orange (MO) solutions was used to evaluate the photocatalytic activity of the catalysts under UV and visible light irradiation. Surface photovoltage (SPV) and transient photovoltage (TPV) techniques were used to investigate the separation and transport mechanism of the photogenerated charge carriers of the N-doped TiO2 nanoparticles. The relationship between the photogenerated charge carriers and photocatalytic activity was also discussed. The results showed that the SPV threshold values shifted to the visible region and a stronger photovoltaic response in the visible region was observed with an increase in N doping. We also found that the maximum TPV response time was different for N-TiO2. These results indicate that with an appropriate amount of N doping, the photoinduced charge carriers separate efficiently, the transmission time increases, and the lifetime of the photoinduced charge carriers increases. Therefore, the photocatalytic activity is enhanced. However, excessive N acts as recombination centers for photoinduced electrons and holes, which reduces their photocatalytic activity.
-
-
[1]
1. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett., 2006, 6: 215
-
[2]
2. Konstantinau, I. K.; Albanis, T. A. Appl. Catal. B, 2003, 42: 319
-
[3]
3. Sakthivel, S.; Kisch, H. Angew. Chem. Int. Edit., 2003, 42: 4908
-
[4]
4. Hua, N. P.;Wu, Z. Y.; Du, Y. K.; Zou, Z. G.; Yang, P. Acta Phys. - Chim. Sin., 2005, 21: 1081 [华南平, 吴尊义,杜玉扣, 邹志刚, 杨平. 物理化学学报, 2005, 21: 1081]
-
[5]
5. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science, 2001, 293: 269
-
[6]
6. Lin, Z. S.; Orlov, A.; Lambert, R. M.; Payne, M. J. Phys. Chem. B, 2005, 109: 20948
-
[7]
7. Kuroda, Y.; Mori, T.; Yagi, K.; Makihata, N.; Kawahara, Y.; Nagao, M.; Kittaka, S. Langmuir, 2005, 21: 8026
-
[8]
8. Kisch, H.; Sakthivel, S.; Janczarek, M.; Mitoraj, D. J. Phys. Chem. C, 2007, 111: 11445
-
[9]
9. Yang, K. S.; Dai, Y.; Huang, B. B. J. Phys. Chem. C, 2007, 111: 12086
-
[10]
10. Tian, F. H.; Liu, C. B. J. Phys. Chem. B, 2006, 110: 17866
-
[11]
11. Zhou, Y. K.; Holme, T.; Berry, J.; Ohno, T. R.; Ginley, D.; Hayre, R. O. J. Phys. Chem. C, 2010, 114: 506
-
[12]
12. Li, J. Y.; Lu, N.; Quan, X.; Chen, S.; Zhao, H. M. Ind. Eng. Chem. Res., 2008, 47: 3804
-
[13]
13. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev., 1995, 95: 735
-
[14]
14. Monllor-Satoca, D.; Gómez, R. J. Phys. Chem. C, 2008, 112: 139
-
[15]
15. Gross, D.; Mora-Seró, I.; Dittrich, T.; Belaidi, A.; Mauser, C.; Houtepen, A. J.; Como, E. D.; Rogach, A. L.; Feldmann, J. J. Am. Chem. Soc., 2010, 132: 5981
-
[16]
16. Duzhko, V.; Timoshenko, V. Y.; Koch, F.; Dittrich, T. Phys. Rev. B, 2001, 64: 075204
-
[17]
17. Alexander, D. Q.; Li, L. S. J. Phys. Chem. B, 2004, 108: 12842
-
[18]
18. Huang, D. G.; Liao, S. J.; Zhou,W. B.; Quan, S. Q.; Liu, L.; He, Z. J.;Wan, J. B. J. Phys. Chem. Sol., 2009, 70: 853
-
[19]
19. Sathishi, M.; Viswanathan, B.; Viswanath, R. P.; pinath, C. S. Chem. Mater., 2005, 17: 6349
-
[20]
20. Li, H.; Li, J.; Huo, Y. J. Phys. Chem. B, 2006, 110: 1559
-
[21]
21. Burda, C.; Lou, Y.; Chen, X.; Samia, A. C. S.; Stout, J.; le, J. M. Nano Lett., 2003, 3: 1049
-
[22]
22. Valentin, C. D.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. J. Phys. Chem. B, 2005, 109: 11414
-
[23]
23. Kronik, L.; Shapira, Y. Surf. Sci. Rep., 1999, 371: 206
-
[24]
24. Liu, E. K.; Zhu, B. S.; Luo, J. S. Semiconductor physics. Beijing: Electronics Industry Press, 2003: 98-100 [刘恩科,朱秉升, 罗晋 生.半导体物理学.北京: 电子工业出版社, 2003: 98-100]
-
[25]
25. Wei, X.; Xie, T. F.; Xu, D.; Zhao, Q. D.; Pang, S.; Wang, D. J. Nanotechnology, 2008, 19: 275707
-
[1]
-
-
[1]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[2]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[3]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[4]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[5]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[6]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[7]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[8]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[9]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[10]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[11]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[12]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[13]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[14]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[15]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[16]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[17]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[18]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[19]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(2032)
- Abstract views(4432)
- HTML views(5)