Citation: ZHANG Xiao-Fei, SHAO Zheng-Feng, MAO Guo-Qiang, HE De-Min, ZHANG Qiu-Min, LIANG Chang-Hai. Naphthalene Hydrogenation Activity over Pd, Pt and Pd-Pt Catalysts and Their Sulfur Tolerance[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2691-2698. doi: 10.3866/PKU.WHXB20101006 shu

Naphthalene Hydrogenation Activity over Pd, Pt and Pd-Pt Catalysts and Their Sulfur Tolerance

  • Received Date: 6 May 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(20973029) (20973029)

  • Monometallic Pd and Pt as well as bimetallic Pd:Pt catalysts (Pd1Pt1, Pd1Pt4, and Pd4Pt1) with Pd/Pt molar ratios of 1:1, 1:4, and 4:1 supported on SiO2-Al2O3 were prepared by incipient-wetness impregnation and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, and X-ray photoelectron spectroscopy (XPS). Their catalytic activities toward naphthalene hydrogenation and the sulfur tolerance of these catalysts were investigated. We found that naphthalene conversion, selectivity toward decalin, and the trans-/cis-decalin yieldratio on Pd4Pt1 were 98.2%,93.6%,and 7.8,respectively,which are higher than those on Pd(97.5%,59.1%, 4.3) and Pt (96.8%, 39.9%, 2.9). The rate of naphthalene hydrogenation on the three catalysts increased according to: vPd4Pt1>vPd>vPt. In the presence of dibenzothiophene (DBT), the naphthalene conversion and selectivity toward decalin for Pd4Pt1 were still the highest. The trans-/cis-decalin ratio was not affected on the Pt catalyst, but it did decrease slightly on Pd4Pt1 and it decreased observably on the Pd catalyst. The Pd4Pt1 catalyst also presented the highest naphthalene conversion and selectivity toward decalin among the three bimetallic catalysts studied in the presence and absence of DBT.

     

  • 加载中
    1. [1]

      1. Lee, S. L.; Wind, M. D.; Desai, P. H.; Johnson, C. C.; Mehmet, Y. A. Fuel Reform., 1993, 5: 26

    2. [2]

      2. Khan, M. R.; Reynolds, G. Chemtech, 1996, 26: 56

    3. [3]

      3. Yasuda, H.; Yoshimura, Y. Catal. Lett., 1997, 46: 43

    4. [4]

      4. Koussathana, M.; Vamvouka, D.; Economou, H.; Verykios, X. Appl. Catal., 1991, 77: 283

    5. [5]

      5. Fujikawa, T.; Idei, K.; Ebihara, T.; Mizuguchi, H.; Usui, K. Appl. Catal. A, 2000, 192: 253

    6. [6]

      6. Lin, T. B.; Jan, C. A.; Chang, J. R. Ind. Eng. Chem. Res., 1995, 34: 4284

    7. [7]

      7. Zhu, H. Y.; Zhang, Y.; Qiu, Z. G.; Cui, H. T.; Zhao, L. F. Fine Chem., 2009, 26: 5 [朱红英, 张晔,邱泽刚,崔海涛, 赵亮富. 精细化工, 2009, 26: 5]

    8. [8]

      8. Schmitz, A. D.; Bowers, G.; Song, C. Catal. Today, 1996, 31: 45

    9. [9]

      9. Lai,W. C.; Song, C. Catal. Taday, 1996, 31: 171

    10. [10]

      10. Kumata, F.; Hirasawa, Y. Method for producing decalin from naphthalene by two stage hydrogeneration reaction: Japan, JP2003160515[P]. 2003-06-03

    11. [11]

      11. Kumata, F.; Hirasawa, Y. Method for producing decalin by hydrogenating naphthalene: Japan, JP2003212800[P]. 2003-07-30

    12. [12]

      12. Jaffe, F. Preparation of cis-decalin: US, 3349139[P]. 1967-10-24

    13. [13]

      13. Shoichiro, M.; Masakazu, H. Hydrogenation catalyst: Japan, JP51121495[P]. 1976-10-23

    14. [14]

      14. Weitkamp, A. W. Adv. Catal., 1968, 18: l

    15. [15]

      15. Matsui, T.; Harada, M.; Bando, K. K.; Toba, M.; Yoshimura, Y. Appl. Catal. A, 2005, 290: 73

    16. [16]

      16. Niquille-Röthlisberger, A.; Prins, R. J. Catal., 2006, 242: 207

    17. [17]

      17. Navarro, R. M.; Pawelec, B.; Trejo, J. M.; Mariscal, R.; Fierro, J. L. G. J. Catal., 2000, 189: 184

    18. [18]

      18. Jongpatiwut, S.; Li, Z. R.; Resasco, D. E.; Alvarez, W. E.; Sughrue, E. L.; Dodwell, G. W. Appl. Catal. A, 2004, 262: 241

    19. [19]

      19. Huang, T. C.; Kang, B. C. Ind. Eng. Chem. Res., 1995, 34: 1140

    20. [20]

      20. Matsubayashi, N.; Yasuda, H.; Imaura, M.; Yoshimura, Y. Catal. Today, 1998, 45: 375

    21. [21]

      21. Yasuda, H.; Matsubayashi, N.; Sato, T.; Yoshimura, Y. Catal. Lett., 1998, 54: 23

    22. [22]

      22. Guillon, E.; Lynch, J.; Uzio, D.; Didillon, B. Catal. Today, 2001, 65: 201

    23. [23]

      23. Lee, J. K.; Rhee, H. K. J. Catal., 1998, 177: 208

    24. [24]

      24. Fujikawa, T.; Tsuji, K.; Mizuguchi, H.; do, H.; Idei, K.; Usui, K. Catal. Lett., 1999, 63: 27

    25. [25]

      25. Hansen, P. L.; Molenbroek, A. M.; Ruban, A. V. J. Phys. Chem., 1997, 101: 1861

    26. [26]

      26. Fiermans, L.; De Gryse, R.; De Doncker, G.; Jacobs, P. A.; Martens, J. A. J. Catal., 2000, 193: 108


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(1373)
  • Abstract views(2983)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return