Citation: ZHONG Ai-Guo, HUANG Ling, LI Bai-Ling, JIANG Hua-Jiang, LIU Shu-Bin. Structure, Spectroscopy and Reactivity Properties of Helically Chiral Metal(II)-Bisdipyrrin Complexes[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2763-2771. doi: 10.3866/PKU.WHXB20101005 shu

Structure, Spectroscopy and Reactivity Properties of Helically Chiral Metal(II)-Bisdipyrrin Complexes

  • Received Date: 10 June 2010
    Available Online: 27 September 2010

  • The tetradentate coordination of bisdipyrrin ligands from cyclooctapyrroles with single and double metal cation metalations generates helical chirality and brings about recent research interests in supremolecular chemistry. In this study, eight divalent metal cations (M(II), M=Ca, Mg, Mn, Zn, Cu, Ni, Fe, Co) in the formation of the singly metalated complexes (1M) and binuclear metal complexes (2M) are systematically investigated to appreciate their structure, spectroscopy, and reactivity properties by using density functional theory (DFT), time-dependent DFT, and conceptual DFT approaches. Their bonding properties are analyzed by the natural bond orbital (NBO) analysis. The simulation results revealed that structure, spectroscopy, and reactivity features of the 1M and 2M complexes are markedly different from their precursor bisdipyrrin (1H) with a larger electrophilicity index, smaller chemical hardness, and distinctive dual descriptor. UV-Vis spectra show diminished peaks with red shifts due to metalation.A few linear structure-reactivity relationships stemmed from these structure and reactivity properties have been obtained with the correlation coefficient (R2) between 0.858 and 0.986. The results can provide in-depth insights for these complexes from structure and reactivity viewpoints.

  • 加载中
    1. [1]

      1. (a) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res., 2001, 34: 40 (b) Bart, M. N.; Suijkerbuijk, R. K. Angew. Chem. Int. Edit., 2008, 47: 7396 (c) Collman, J. P.; Fu, L. Acc. Chem. Res., 1999, 32: 455

    2. [2]

      2. (a) Meunier, B. Chem. Rev., 1992, 92: 1411 (b) Gust, D.; Moore, T. A.; Moore; A. L. Pure Appl. Chem., 1998, 70: 2189

    3. [3]

      3. (a) Sharman, W. M.; Van Lier, J. E. Drug Discovery Today, 1999, 4: 507 (b) Refael, M.; Hana, W.; Youngjae, Y. J. Phys. Chem. B, 2008, 112: 3268

    4. [4]

      4. (a) Haridas, V.; Harinder, S.; Yogesh, K.; Kashmiri, L. J. Chem. Sci., 2007, 119: 219 (b) Pushpan, S. K.; Venkatraman, S.; Anand, V. G.; Sankar, J.; Rath, H.; Chandrasheka, T. K. Proc. Indian Acad. Sci. (Chem. Sci.), 2002, 114: 311

    5. [5]

      5. Dollphin, D. The porphyrins. NewYork: Academic Press, 1978: 240

    6. [6]

      6. Sessler, J. L.; Weghorn, S. J. Expanded, contracted and isomeric porphyrins. Oxford: Elsevier, 1997: 520

    7. [7]

      7. (a) Buchecker, C. O.; Sauvage, J. P. Angew. Chem. Int. Edit., 1989, 28: 189 (b) Buchecker, C. O.; Guilhemj, P. C.; Sauvage, J. P. Angew. Chem. Int. Edit., 1990, 29: 1154 (c) Buchecker, C. O.; Nierengarten, J. F.; Sauvage, J. P.; Armaroli, N.; Balzani, V.; Cola, L. D. J. Am. Chem. Soc., 1993, 115: 11237

    8. [8]

      8. Vogel, E.; Bröring, M.; Fink, J.; Rosen, D.; Schmickler, H.; Lex, J.; Chan, K.; Wu, Y. D.; Plattner, D. A.; Nendel, M.; Houk, K. N. Angew. Chem. Int. Edit., 1995, 34: 2511

    9. [9]

      9. Werner, A.; Michels, M.; Zander, L.; Lex, J.; Vogel, E. Angew. Chem. Int. Edit., 1999, 38: 3650

    10. [10]

      10. Setsune, J.; Tsukajima, A.; Okazaki, N.; Lintuluoto, J. M.; Lintuluoto, M. Angew. Chem. Int. Edit., 2009, 48: 771

    11. [11]

      11. (a) Lexander, G.; Vogel, E.; Jonathan, L. Chemical Physics, 2002, 282: 37 (b) Punnagai, M.; Hari, S. J. Mol. Struct.-Theochem, 2004, 684: 21 (c) Katsunori, N.; Kei, K.; Atsuhiro, O. J. Inorg. Biochem., 2008, 102: 466 (d) Deng, W. Y.; Qiu, W. Y. J. Mol. Struct., 2008, 875: 515

    12. [12]

      12. Amanda, J. M.;William, D. K.; Hiroshi, F.; David, P. G. J. Am. Chem. Soc., 2009, 131: 8040

    13. [13]

      13. John, M.; Martin, J.; Stillman, N. K. Coord. Chem. Rev, 2007, 251: 429

    14. [14]

      14. (a) Parr, R. G.; Yang,W. T. Density functional theory of atoms and molecules. NewYork: Oxford University Press, 1989 (b) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev., 2003, 103: 1793 (c) Chermette, H. J. Comput. Chem., 1999, 20: 129

    15. [15]

      15. (a) Rong, C. Y.; Lian, S. X.; Yin, D. L.; Zhong, A. G.; Zhang, R. Q.; Liu, S. B. Chem. Phys. Lett., 2007, 434: 149 (b) Xia, Y.; Yin, D. L.; Rong, C. Y.; Xu, Q.; Yin, D. H.; Liu, S. B. J. Phys. Chem. A, 2008, 112: 9970

    16. [16]

      16. (a) Parr, R. G.; Szentpaly, L. V.; Liu, S. B. J. Am. Chem. Soc., 1999, 105: 1922 (b) Liu, S. B.; Parr, R. G. J. Chem. Phys., 1997, 106: 5578

    17. [17]

      17. Mulliken, R. S. J. Chem. Phys., 1934, 2: 782

    18. [18]

      18. Pearson, R. G. J. Am. Chem. Soc., 1963, 85: 3533

    19. [19]

      19. Liu, S. B.; vind, N. J. Phys. Chem. A, 2008, 112: 6690

    20. [20]

      20. Liu, S. B. Electrophilicity//Chattaraj, P. K. Chemical reactivity theory: a density functional theory view. London: Taylor& Francis Group, 2009

    21. [21]

      21. Zhang, J.; Hu, S. Q.; Wang, Y.; Guo, W. Y.; Liu, J. X.; You, L. Acta Chimica Sinica, 2008, 66: 2469 [张军,胡松青,王勇, 郭文跃,刘金祥, 尤龙.化学学报, 2008, 66: 2469]

    22. [22]

      22. Liu, S. B. Acta Phys. -Chim. Sin., 2009, 25: 590 [刘述斌.物理 化学学报, 2009, 25: 590]

    23. [23]

      23. Frisch, M. J.; Trucks, G. W.; Schlegel. H. B.; et al. Gaussian 03 Revision D.02. Pittsburgh, PA: Gaussian Inc., 2003

    24. [24]

      24. Huang, Y.; Zhong, A. G.; Rong, C. Y.; Xiao, X. M.; Liu, S. B. J. Phys. Chem. A, 2008, 112: 305

    25. [25]

      25. Zhong, A. G.; Wu, J. Y.; Yan, H.; Jin, Y. X.; Dai, G. L.; Jiang, H. J.; Pan, F. Y.; Liu, S. B. Acta Phys. -Chim. Sin., 2009, 24: 1367 [钟爱国,吴俊勇, 闫华, 金燕仙,戴国梁,蒋华江, 潘富友,刘述 斌. 物理化学学报, 2009, 24: 1367]


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    9. [9]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(1559)
  • Abstract views(3808)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return