Citation: LI Wei-Wei, HOU Ruo-Bing, SUN Yan-Li. Characteristics of One Electron Redox Behavior of Hydrophobic AminoAcids in Gas Phase[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2772-2778. doi: 10.3866/PKU.WHXB20101004
-
Characteristics of the one electron redox behavior of hydrophobic amino acids in gas phase were calculated with density functional theory at the B3LYP/DZP++ level. For glycine, alanine, proline, valine, leucine, and isoleucine with small side chains, the computational results indicate that the negative charges are removed from the atoms of their amino, α-carbon, and carboxy moieties in one electron oxidation reactions. This yields large adiabatic ionization potentials (AIP) of 8.52-9.15 eV. The AIPs of cysteine, methionine, phenylalanine, tyrosine, and tryptophan decrease because of the larger amount of negative charge removed from the atoms in their side chains. The attachment of one electron to the molecules of hydrophobic amino acids leads to anions in which the extra electron is bound to the H atoms of the carboxyl or amino groups and to their valence orbitals, reflecting the double nature of the dipole -bound state and the valence state. The electron affinities (EA) for the amino acids are small and negative ranging from -0.08 to -0.63 eV. The molecules of the hydrophobic amino acids are oxidized or reduced with difficulty in gas phase because of their high VIPs and negative EAs.
-
-
[1]
1. Guo, Z. F.; An, Q. R. Journal of Hebei University: Natural Science Edition, 1997, 17: 73 [郭志峰, 安秋荣.河北大学学报(自然科 学版), 1997, 17: 73]
-
[2]
2. Campbell, S.; Beauchamp, J. L.; Rempe, M.; Lichtenberger, D. L. Int. J. Mass Spectrom. Ion Processes, 1992, 117: 83
-
[3]
3. Dehareng, D.; Dive, G. Int. J. Mol. Sci., 2004, 5: 301
-
[4]
4. Millefiori, S.; Alparone, A.; Millefiori, A.; Vanella, A. Biophys. Chem., 2008, 132: 139
-
[5]
5. Kishora, S.; Dhayalb, S.; Mathurc, M.; Ramaniah, L. M. Mol. Phys., 2008, 106: 2289
-
[6]
6. Wright, L. R.; Borkman, R. F. J. Am. Chem. Soc., 1980, 102: 6207
-
[7]
7. Rai, A. K.; Song, C.; Lin, Z. J. Spectrochim. Acta A, 2009, 73: 865
-
[8]
8. Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F.; Nandi, S.; Ellison, G. B. Chem. Rev., 2002, 102: 231
-
[9]
9. Hou, R. B.; Gu, J. D.; Xie, Y. M.; Yi, X. H.; Schaefer, H. F. J. Phys. Chem. B, 2005, 109: 22053
-
[10]
10. Richardson, N. A.; Gu, J.; Wang, S.; Xie, Y.; Schaefer, H. F. J. Am. Chem. Soc., 2004, 126: 4404
-
[11]
11. Gu, J.; Xie, Y.; Schaefer, H. F. Nucleic Acids Res., 2007, 35: 5165
-
[12]
12. Gu, J.; Xie, Y.; Schaefer, H. F. J. Phys. Chem. B, 2010, 114: 1221
-
[13]
13. Bao, X. G.; Wang, J.; Gu, J. D.; Leszczynski, J. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 5658
-
[14]
14. Hou, R. B.; Li,W. W.; Shen, X. C. Acta Phys. -Chim. Sin., 2008, 24: 269 [侯若冰,李伟伟,沈星灿. 物理化学学报, 2008, 24: 269]
-
[15]
15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al., Gaussian 03. Revision B.03. Pittsburgh, PA: Gaussian Inc., 2003
-
[16]
16. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys., 1985, 83: 735
-
[17]
17. Reed, A. E.; Weinhold, F. J. Chem. Phys., 1985, 83: 1736
-
[18]
18. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev., 1988, 88: 899
-
[19]
19. Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc., 1990, 112: 1434
-
[20]
20. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1
-
[21]
21. Pacios, L. F.; mez, P. C. J. Mol. Struct. -Theochem, 2001, 544: 237
-
[22]
22. Lu, J. F.; Zhu, S. L.; Zhou, Z. Y.; Wu, Q. Y.; Zhao, G. Pol. J. Chem., 2006, 80: 471
-
[23]
23. Wilke, J. J.; Lind, M. C.; Schaefer III, H. F.; Csaszar, A. G.; Allen, W. D. J. Chem. Theory Comput., 2009, 5: 1511
-
[24]
24. Czinki, E.; Csazar, A. G. Chem. Eur. J., 2003, 9(4): 1008
-
[25]
25. Dokmaisrijan, S.; Lee, V. S.; Nimmanpipug, P. J. Mol. Struct. - Theochem, 2010, 953: 28
-
[26]
26. Armentrout, P. B.; Gabriel, A.; Moision, R. M. Int. J. Mass Spectrom., 2009, 283: 56
-
[27]
27. Huang, Z. J.; Yu, W. B.; Lin, Z. J. J. Mol. Struct. -Theochem, 2006, 758: 195
-
[28]
28. Zhang, M. L.; Huang, Z. J.; Lin, Z. J. J. Chem. Phys., 2005, 122: 134313
-
[29]
29. Huang, Z. J.; Lin, Z. J. J. Phys. Chem. A, 2005, 109: 2656
-
[30]
30. Vorsa, V.; Kono, T.; Willey, K. F.;Winograd, N. J. Phys. Chem. B, 1999, 103: 7889
-
[31]
31. Diken, E. G.; Hammer, N. I.; Johnson M. A. J. Chem. Phys., 2004, 120: 9899
-
[32]
32. Abouaf, R. Chem. Phys. Lett., 2008, 451: 25
-
[33]
33. Hou, R. B.; Li,W. W. Journal of Guangxi Normal University: Natural Science Edition, 2009, 27: 78 [侯若冰,李伟伟. 广西师 范大学学报(自然科学版), 2009, 27: 78]
-
[1]
-
-
[1]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[2]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[3]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[4]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[8]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[9]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[10]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[11]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[12]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[13]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[14]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[15]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[16]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[17]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[18]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[19]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[20]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[1]
Metrics
- PDF Downloads(1283)
- Abstract views(2725)
- HTML views(12)