Citation: LI Wei-Wei, HOU Ruo-Bing, SUN Yan-Li. Characteristics of One Electron Redox Behavior of Hydrophobic AminoAcids in Gas Phase[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2772-2778. doi: 10.3866/PKU.WHXB20101004 shu

Characteristics of One Electron Redox Behavior of Hydrophobic AminoAcids in Gas Phase

  • Received Date: 26 May 2010
    Available Online: 27 September 2010

    Fund Project: 广西研究生创新计划项目(2009106020703M48)资助 (2009106020703M48)

  • Characteristics of the one electron redox behavior of hydrophobic amino acids in gas phase were calculated with density functional theory at the B3LYP/DZP++ level. For glycine, alanine, proline, valine, leucine, and isoleucine with small side chains, the computational results indicate that the negative charges are removed from the atoms of their amino, α-carbon, and carboxy moieties in one electron oxidation reactions. This yields large adiabatic ionization potentials (AIP) of 8.52-9.15 eV. The AIPs of cysteine, methionine, phenylalanine, tyrosine, and tryptophan decrease because of the larger amount of negative charge removed from the atoms in their side chains. The attachment of one electron to the molecules of hydrophobic amino acids leads to anions in which the extra electron is bound to the H atoms of the carboxyl or amino groups and to their valence orbitals, reflecting the double nature of the dipole -bound state and the valence state. The electron affinities (EA) for the amino acids are small and negative ranging from -0.08 to -0.63 eV. The molecules of the hydrophobic amino acids are oxidized or reduced with difficulty in gas phase because of their high VIPs and negative EAs.

  • 加载中
    1. [1]

      1. Guo, Z. F.; An, Q. R. Journal of Hebei University: Natural Science Edition, 1997, 17: 73 [郭志峰, 安秋荣.河北大学学报(自然科 学版), 1997, 17: 73]

    2. [2]

      2. Campbell, S.; Beauchamp, J. L.; Rempe, M.; Lichtenberger, D. L. Int. J. Mass Spectrom. Ion Processes, 1992, 117: 83

    3. [3]

      3. Dehareng, D.; Dive, G. Int. J. Mol. Sci., 2004, 5: 301

    4. [4]

      4. Millefiori, S.; Alparone, A.; Millefiori, A.; Vanella, A. Biophys. Chem., 2008, 132: 139

    5. [5]

      5. Kishora, S.; Dhayalb, S.; Mathurc, M.; Ramaniah, L. M. Mol. Phys., 2008, 106: 2289

    6. [6]

      6. Wright, L. R.; Borkman, R. F. J. Am. Chem. Soc., 1980, 102: 6207

    7. [7]

      7. Rai, A. K.; Song, C.; Lin, Z. J. Spectrochim. Acta A, 2009, 73: 865

    8. [8]

      8. Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F.; Nandi, S.; Ellison, G. B. Chem. Rev., 2002, 102: 231

    9. [9]

      9. Hou, R. B.; Gu, J. D.; Xie, Y. M.; Yi, X. H.; Schaefer, H. F. J. Phys. Chem. B, 2005, 109: 22053

    10. [10]

      10. Richardson, N. A.; Gu, J.; Wang, S.; Xie, Y.; Schaefer, H. F. J. Am. Chem. Soc., 2004, 126: 4404

    11. [11]

      11. Gu, J.; Xie, Y.; Schaefer, H. F. Nucleic Acids Res., 2007, 35: 5165

    12. [12]

      12. Gu, J.; Xie, Y.; Schaefer, H. F. J. Phys. Chem. B, 2010, 114: 1221

    13. [13]

      13. Bao, X. G.; Wang, J.; Gu, J. D.; Leszczynski, J. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 5658

    14. [14]

      14. Hou, R. B.; Li,W. W.; Shen, X. C. Acta Phys. -Chim. Sin., 2008, 24: 269 [侯若冰,李伟伟,沈星灿. 物理化学学报, 2008, 24: 269]

    15. [15]

      15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al., Gaussian 03. Revision B.03. Pittsburgh, PA: Gaussian Inc., 2003

    16. [16]

      16. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys., 1985, 83: 735

    17. [17]

      17. Reed, A. E.; Weinhold, F. J. Chem. Phys., 1985, 83: 1736

    18. [18]

      18. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev., 1988, 88: 899

    19. [19]

      19. Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc., 1990, 112: 1434

    20. [20]

      20. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1

    21. [21]

      21. Pacios, L. F.; mez, P. C. J. Mol. Struct. -Theochem, 2001, 544: 237

    22. [22]

      22. Lu, J. F.; Zhu, S. L.; Zhou, Z. Y.; Wu, Q. Y.; Zhao, G. Pol. J. Chem., 2006, 80: 471

    23. [23]

      23. Wilke, J. J.; Lind, M. C.; Schaefer III, H. F.; Csaszar, A. G.; Allen, W. D. J. Chem. Theory Comput., 2009, 5: 1511

    24. [24]

      24. Czinki, E.; Csazar, A. G. Chem. Eur. J., 2003, 9(4): 1008

    25. [25]

      25. Dokmaisrijan, S.; Lee, V. S.; Nimmanpipug, P. J. Mol. Struct. - Theochem, 2010, 953: 28

    26. [26]

      26. Armentrout, P. B.; Gabriel, A.; Moision, R. M. Int. J. Mass Spectrom., 2009, 283: 56

    27. [27]

      27. Huang, Z. J.; Yu, W. B.; Lin, Z. J. J. Mol. Struct. -Theochem, 2006, 758: 195

    28. [28]

      28. Zhang, M. L.; Huang, Z. J.; Lin, Z. J. J. Chem. Phys., 2005, 122: 134313

    29. [29]

      29. Huang, Z. J.; Lin, Z. J. J. Phys. Chem. A, 2005, 109: 2656

    30. [30]

      30. Vorsa, V.; Kono, T.; Willey, K. F.;Winograd, N. J. Phys. Chem. B, 1999, 103: 7889

    31. [31]

      31. Diken, E. G.; Hammer, N. I.; Johnson M. A. J. Chem. Phys., 2004, 120: 9899

    32. [32]

      32. Abouaf, R. Chem. Phys. Lett., 2008, 451: 25

    33. [33]

      33. Hou, R. B.; Li,W. W. Journal of Guangxi Normal University: Natural Science Edition, 2009, 27: 78 [侯若冰,李伟伟. 广西师 范大学学报(自然科学版), 2009, 27: 78]


  • 加载中
    1. [1]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    2. [2]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(1283)
  • Abstract views(2726)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return