Citation: QIAN Di-Feng, ZHANG Qing-Hong, * WAN Jun, LI Yao-Gang, WANG Hong-Zhi. Enhancing the Photovoltaic Performance of Dye Sensitized Solar Cells with the TiO2 Sol Infiltrated Nanocrystalline Electrode[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2745-2751. doi: 10.3866/PKU.WHXB20100948 shu

Enhancing the Photovoltaic Performance of Dye Sensitized Solar Cells with the TiO2 Sol Infiltrated Nanocrystalline Electrode

  • Received Date: 7 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(50772127) (50772127)教育部科技创新工程重大项目培育资金项目(708039) (708039)中央高校基本科研业务费专项资金(10D10607)资助 (10D10607)

  • Transparent anatase titanium dioxide sol was prepared by the hydrothermal treatment of the home-made water soluble peroxotitanium acid (PTA). The nanorod-like TiO2 nanocrystals witha mean diameter of less than7 nm were obtained in the absence of organic compounds. In order to eliminate the large pores derived from eletrode sintering and improve the connectivity among particles in the porous TiO2 electrode, the as-prepared TiO2 sol was infiltrated to the porous TiO2 photoanode for dye sensitized solar cells (DSSCs). As a result, small nanocrystals of titanium dioxide attached to the surface of porous titanium dioxide as well as filled the large pores produced by photoanode sintering. The efficient electron transport networks were formed inside the porous titanium dioxide, which was confirmed by scanning electron microscope (SEM) and optical profilometry. The modified TiO2 film as the anodic electrode was used for the DSSCs and assembled into solar cells. Consequently, the overall energy conversion efficiency of the DSSCs was significantly enhanced by 64% after the low-concentration TiO2 sol infiltration.

  • 加载中
    1. [1]

      1. O'Regan, B.; Grätzel, M. Nature, 1991, 353: 737

    2. [2]

      2. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissõrtel, F. J.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature, 1998, 395: 583

    3. [3]

      3. Hagfeldt, A.; Grätzel, M. Acc. Chem. Res., 2000, 33: 269

    4. [4]

      4. Grätzel, M. Nature, 2001, 414: 338

    5. [5]

      5. Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun., 2003: 3036

    6. [6]

      6. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater., 2003, 15: 2101

    7. [7]

      7. Zhan, W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin., 2009, 25: 2087 [詹卫伸,潘石,李源作,陈茂笃. 物理化学学 报, 2009, 25: 2087]

    8. [8]

      8. Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B, 2003, 107: 8607

    9. [9]

      9. Park, N. G.; Schlichthorl, G.; van de Lagemaat, J.; Cheong, H. M.; Mascarenhas, A.; Frank, A. J. J. Phys. Chem. B, 1999, 103: 3308

    10. [10]

      10. Cass, M. J.; Qiu, F. L.; Walker, A. B.; Fisher A. C.; Peter, L. M. J. Phys. Chem. B, 2003, 107: 113

    11. [11]

      11. Kamat, P. V.; Haria, M.; Hotchandani, S. J. Phys. Chem. B, 2004, 108: 5166

    12. [12]

      12. Tan, S.; Zhai, J.; Xue, B.;Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Langmuir, 2004, 20: 2934

    13. [13]

      13. Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S. J. Phys. Chem. B, 2006, 110: 25222

    14. [14]

      14. Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L. J. Phys. Chem. B, 2001, 105: 1422

    15. [15]

      15. Yu, H.; Zhang, S. Q.; Zhao, H. J.; Xue, B. F.; Liu, P. R.; Will, G. J. Phys. Chem. C, 2009, 113: 16277

    16. [16]

      16. Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Chem. Commun., 2000: 2231

    17. [17]

      17. Yang, S. M.; Huang, Y. Y.; Huang, C. H.; Zhao, X. S. Chem. Mater., 2002, 14: 1500

    18. [18]

      18. Diamant, Y. S.; Chen, G.; Melamed, O.; Zaban, A. J. Phys. Chem. B, 2003, 107: 1977

    19. [19]

      19. Taguchi, T.; Zhang, X. T.; Sutanto, I.; Tokuhiro, K.; Rao, T. N.; Watanabe, H.; Nakamori, T.; Uragami, M.; Fujishima, A. Chem. Commun., 2003: 2480

    20. [20]

      20. Hore, S.; Kern, R. Appl. Phys. Lett., 2005, 87: 263504

    21. [21]

      21. Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B, 1997, 101: 2567

    22. [22]

      22. Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. Chem. Commun., 2007: 138

    23. [23]

      23. Xu, B.;Wu, J. H.; Zhang, X. K.; Li, S. Q. J. Funct. Mater., 2008, 39(10): 1703 [徐波, 吴季怀,张秀坤,李树全.功能材料, 2008, 39(10): 1703]

    24. [24]

      24. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; sakamoto, M.;Wang, F. J. Am. Chem. Soc., 2004, 126: 14943

    25. [25]

      25. Li, S.; Li, Y. G.; Wang, H. Z.; Fan, W. G.; Zhang, Q. H. Eur. J. Inorg. Chem., 2009, 27: 4078

    26. [26]

      26. Yang, S. M.; Kou, H. Z.; Wang, L.; Wang, H. J.; Fu, W. H. Acta Phys. -Chim. Sin., 2009, 25: 1219 [杨术明,寇慧芝,汪玲,王 红军,付文红.物理化学学报, 2009, 25: 1219]

    27. [27]

      27. O'Regan, B.; Durrant, J.; Sommeling, P.; Bakker, N. J. Phys. Chem. C, 2007, 111: 14001

    28. [28]

      28. Li, S.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. J. Inorg. Mater., 2009, 24: 675 [李爽, 张青红, 李耀刚,王宏志.无机材料学报, 2009, 24: 675]

    29. [29]

      29. Brinker, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc., 1997, 80: 3157

    30. [30]

      30. Zhang, J. Y.; Tian, H. M.; Tian, Z. P.; Wang, X. Y.; Yu, T.; Zou, Z. G. J. Inorg. Mater., 2009, 24: 1110 [张继远,田汉民,田志鹏, 王湘艳,于涛, 邹志刚.无机材料学报, 2009, 24: 1110]

    31. [31]

      31. Ichinose, H.; Terasaki, M.; Katsuki, H. J. Sol-Gel Sci. Technol., 2001, 22: 33

    32. [32]

      32. van de Lagemaat, J.; Benkstein, K. D.; Frank, A. J. J. Phys. Chem. B, 2001, 105: 12433

    33. [33]

      33. Li, X. J.; Jin, Z. J.; Kang, R. K.; Guo, D. M.; Su, J. X. J. Semiconduct., 2005, 11: 2259 [李秀娟,金洙吉, 康仁科, 郭东明,苏建修. 半导体学报, 2005, 11: 2259]

    34. [34]

      34. Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Sol. Energy Mater. Sol. Cells, 2006, 90: 1176

    35. [35]

      35. Wang, F. M.; ng, F.; Li, C. L. J. Tianjin Univ., 2007, 40: 265 [王富民,巩峰,李成亮, 天津大学学报, 2007, 40: 265]

    36. [36]

      36. Frank, A. J.; Kopidakis, N.; van de Lagemaat, J. Coord. Chem. Rev., 2004, 248: 1165


  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    13. [13]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    14. [14]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(1640)
  • Abstract views(3784)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return