Citation: LI Jian-Ling, GAO Fei, ZHANG Ya-Kun, HE Li-Zhi, HAN Gui-Mei, WANG Xin-Dong. Electropolymerization of Nickel Complexes with Schiff Bases: Effect of Sweep Rate on Anodic Polymerization[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2647-2652. doi: 10.3866/PKU.WHXB20100940 shu

Electropolymerization of Nickel Complexes with Schiff Bases: Effect of Sweep Rate on Anodic Polymerization

  • Received Date: 4 May 2010
    Available Online: 27 September 2010

    Fund Project: 北京市自然科学基金(2093039) (2093039)

  • Anodic electrochemical polymerization of N,N'-ethylenbis (salicylideneaminato) nickel(II) ([Ni(salen)]) in tetrabutylammonium perchlorate (TBAP)/acetonitrile (AN) was investigated by the linear sweep potential method. The sweep rate ranged from 5 to 150 mV·s-1. The effect of sweep rate on the growth of poly[Ni(salen)] was studied by Coulomb analysis. The morphologies of poly[Ni(salen)] were characterized by field emission scanning electron microscopy (FESEM). The relationship between the growth rate of poly[Ni(salen)] (dΓ/dm) and the sweep rate (v) fits the exponential degradation equation. The content of the redox center for poly[Ni(salen)], grown at sweep rate of 20 mV·s-1, reaches a maximum and then decreases as the sweep rate increases because monomer diffusion restricts the growth of poly[Ni(salen)]. We studied the effect of polymerization sweep rate on the kinetics of the as-grown poly[Ni (salen)] by cyclic voltammetry. The charge diffusion coefficient (D) of poly[Ni(salen)] grown at a sweep rate of 20 mV·s-1 was found to be the highest.

  • 加载中
    1. [1]

      1. Dahm, C. E.; Peters, D. G. Anal. Chem., 1994, 66: 3117

    2. [2]

      2. Abdirisak, A. I.; Armando, G.; Elio, V. Electrochimica Acta, 1997, 42: 2065

    3. [3]

      3. Giulio, B.; Alessandra, C.; Alesandro, S.; Giorgio, S. Green Chem., 2009, 11: 1517

    4. [4]

      4. Samiran, B.; Kwang, E. J.; Song, Y. J.; Wha, S. A. New J. Chem., 2010, 34: 156

    5. [5]

      5. Zhou, X.; Sheare, J.; Rokita, S. E. J. Am. Chem. Soc., 2000, 122: 9046

    6. [6]

      6. Khairul, I. A.; James, D. G.; Getachew, A. W.; Sahba, K.; Subhrangsu, S. M. Org. Biomol. Chem., 2009, 7: 926

    7. [7]

      7. Henderson, M. J.; Hillman, A. R.; Vieil, E. J. Phys. Chem. B, 1999, 103: 8899

    8. [8]

      8. Martins, M.; Freire, C.; Hillman, A. R. Chem. Commun., 2003, (3): 434

    9. [9]

      9. Tedim, J.; Carneiro, A.; Bessada, R.; Patricio, S.; Magalhaes, A. L.; Freire, C.; Gurman, S. J.; Hillman, A. R. J. Electroanal. Chem., 2007, 610: 46

    10. [10]

      10. Dahm, C. E.; Peters, D. G. J. Electroanal. Chem., 1996, 406: 119

    11. [11]

      11. Dahm, C. E.; Peters, D. G.; Simonet, J. J. Electroanal. Chem., 1996, 410: 163

    12. [12]

      12. ldsby, K. A.; Blaho, J. K.; Hoferkamp, L. A. Polyhedron, 1989,8: 113

    13. [13]

      13. ldsby, K. A.; Hoferkamp, L. A. Chem. Mater., 1989, 1: 348

    14. [14]

      14. Audebert, P.; Hapiot, P.; Capdevielle, P.; Maumy, M. J. Electroanal. Chem., 1992, 338: 269

    15. [15]

      15. Boas, M. V.; Freire, C.; Castro, B. D.; Christensen, P. A.; Hillman, A. R. Inorg. Chem., 1997, 36: 4919

    16. [16]

      16. Holm, R. H.; Everett, G. W.; Chakravorty, A. Prog. Inorg. Chem., 1966, 7: 183

    17. [17]

      17. Petr, A.; Dunsch, L.; Neudeck, A. J. Electroanal. Chem., 1996, 412: 153

    18. [18]

      18. Tchepurnaya, I. A.; Vasilieva, S. V.; Logvinov, S. A.; Timonov, A. M.; Amadelli, R.; Bartak, D. Langmuir, 2003, 19: 9005

    19. [19]

      19. Martins, M.; Boas, M. V.; Castro, B. D.; Hillman, A. R.; Freire, C. Electrochimica Acta, 2005, 51: 304

    20. [20]

      20. Aubert, P. H.; Audebert, P.; Roche, M.; Capdeville, P.; Maumy, M.; Ricart, G. Chem. Mater., 2001, 13: 2223

    21. [21]

      21. Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications. 2nd ed. NewYork: Wiley Press, 1991: 471-533 (Chapter 12: Electrode Reactions with Coupled Homogeneous Chemical Reactions)

    22. [22]

      22. Boas, M. V.; Freire, C.; Castro, B. D.; Hillman, A. R. J. Phys. Chem. B, 1998, 102: 8522

    23. [23]

      23. Cynthia, G. Z. Handbook of electrochemistry. Oxford: Elsevier Press, 2007: 440-441 (Chapter 11: Classical Experiments)


  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    4. [4]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    11. [11]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(1335)
  • Abstract views(3047)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return