Citation:
	            
		            LI  Jian-Ling, GAO  Fei, ZHANG  Ya-Kun, HE  Li-Zhi, HAN  Gui-Mei, WANG  Xin-Dong. Electropolymerization of Nickel Complexes with Schiff Bases: Effect of Sweep Rate on Anodic Polymerization[J]. Acta Physico-Chimica Sinica,
							;2010, 26(10): 2647-2652.
						
							doi:
								10.3866/PKU.WHXB20100940
						
					
				
					
				
	        
- 
	                	
Anodic electrochemical polymerization of N,N'-ethylenbis (salicylideneaminato) nickel(II) ([Ni(salen)]) in tetrabutylammonium perchlorate (TBAP)/acetonitrile (AN) was investigated by the linear sweep potential method. The sweep rate ranged from 5 to 150 mV·s-1. The effect of sweep rate on the growth of poly[Ni(salen)] was studied by Coulomb analysis. The morphologies of poly[Ni(salen)] were characterized by field emission scanning electron microscopy (FESEM). The relationship between the growth rate of poly[Ni(salen)] (dΓ/dm) and the sweep rate (v) fits the exponential degradation equation. The content of the redox center for poly[Ni(salen)], grown at sweep rate of 20 mV·s-1, reaches a maximum and then decreases as the sweep rate increases because monomer diffusion restricts the growth of poly[Ni(salen)]. We studied the effect of polymerization sweep rate on the kinetics of the as-grown poly[Ni (salen)] by cyclic voltammetry. The charge diffusion coefficient (D) of poly[Ni(salen)] grown at a sweep rate of 20 mV·s-1 was found to be the highest.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
1. Dahm, C. E.; Peters, D. G. Anal. Chem., 1994, 66: 3117
 - 
			
                    [2]
                
			
2. Abdirisak, A. I.; Armando, G.; Elio, V. Electrochimica Acta, 1997, 42: 2065
 - 
			
                    [3]
                
			
3. Giulio, B.; Alessandra, C.; Alesandro, S.; Giorgio, S. Green Chem., 2009, 11: 1517
 - 
			
                    [4]
                
			
4. Samiran, B.; Kwang, E. J.; Song, Y. J.; Wha, S. A. New J. Chem., 2010, 34: 156
 - 
			
                    [5]
                
			
5. Zhou, X.; Sheare, J.; Rokita, S. E. J. Am. Chem. Soc., 2000, 122: 9046
 - 
			
                    [6]
                
			
6. Khairul, I. A.; James, D. G.; Getachew, A. W.; Sahba, K.; Subhrangsu, S. M. Org. Biomol. Chem., 2009, 7: 926
 - 
			
                    [7]
                
			
7. Henderson, M. J.; Hillman, A. R.; Vieil, E. J. Phys. Chem. B, 1999, 103: 8899
 - 
			
                    [8]
                
			
8. Martins, M.; Freire, C.; Hillman, A. R. Chem. Commun., 2003, (3): 434
 - 
			
                    [9]
                
			
9. Tedim, J.; Carneiro, A.; Bessada, R.; Patricio, S.; Magalhaes, A. L.; Freire, C.; Gurman, S. J.; Hillman, A. R. J. Electroanal. Chem., 2007, 610: 46
 - 
			
                    [10]
                
			
10. Dahm, C. E.; Peters, D. G. J. Electroanal. Chem., 1996, 406: 119
 - 
			
                    [11]
                
			
11. Dahm, C. E.; Peters, D. G.; Simonet, J. J. Electroanal. Chem., 1996, 410: 163
 - 
			
                    [12]
                
			
12. ldsby, K. A.; Blaho, J. K.; Hoferkamp, L. A. Polyhedron, 1989,8: 113
 - 
			
                    [13]
                
			
13. ldsby, K. A.; Hoferkamp, L. A. Chem. Mater., 1989, 1: 348
 - 
			
                    [14]
                
			
14. Audebert, P.; Hapiot, P.; Capdevielle, P.; Maumy, M. J. Electroanal. Chem., 1992, 338: 269
 - 
			
                    [15]
                
			
15. Boas, M. V.; Freire, C.; Castro, B. D.; Christensen, P. A.; Hillman, A. R. Inorg. Chem., 1997, 36: 4919
 - 
			
                    [16]
                
			
16. Holm, R. H.; Everett, G. W.; Chakravorty, A. Prog. Inorg. Chem., 1966, 7: 183
 - 
			
                    [17]
                
			
17. Petr, A.; Dunsch, L.; Neudeck, A. J. Electroanal. Chem., 1996, 412: 153
 - 
			
                    [18]
                
			
18. Tchepurnaya, I. A.; Vasilieva, S. V.; Logvinov, S. A.; Timonov, A. M.; Amadelli, R.; Bartak, D. Langmuir, 2003, 19: 9005
 - 
			
                    [19]
                
			
19. Martins, M.; Boas, M. V.; Castro, B. D.; Hillman, A. R.; Freire, C. Electrochimica Acta, 2005, 51: 304
 - 
			
                    [20]
                
			
20. Aubert, P. H.; Audebert, P.; Roche, M.; Capdeville, P.; Maumy, M.; Ricart, G. Chem. Mater., 2001, 13: 2223
 - 
			
                    [21]
                
			
21. Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications. 2nd ed. NewYork: Wiley Press, 1991: 471-533 (Chapter 12: Electrode Reactions with Coupled Homogeneous Chemical Reactions)
 - 
			
                    [22]
                
			
22. Boas, M. V.; Freire, C.; Castro, B. D.; Hillman, A. R. J. Phys. Chem. B, 1998, 102: 8522
 - 
			
                    [23]
                
			
23. Cynthia, G. Z. Handbook of electrochemistry. Oxford: Elsevier Press, 2007: 440-441 (Chapter 11: Classical Experiments)
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
 - 
				[2]
				
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
 - 
				[3]
				
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
 - 
				[4]
				
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
 - 
				[5]
				
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
 - 
				[6]
				
Yun Chen , Daijie Deng , Li Xu , Xingwang Zhu , Henan Li , Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144
 - 
				[7]
				
Xiaotong LU , Pan ZHANG , Zijie ZHAO , Lei HUANG , Hongwei ZUO , Lili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073
 - 
				[8]
				
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
 - 
				[9]
				
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
 - 
				[10]
				
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002
 - 
				[11]
				
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
 - 
				[12]
				
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032
 - 
				[13]
				
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
 - 
				[14]
				
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
 - 
				[15]
				
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
 - 
				[16]
				
Lin′an CAO , Dengyue MA , Gang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160
 - 
				[17]
				
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
 - 
				[18]
				
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
 - 
				[19]
				
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
 - 
				[20]
				
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1335)
 - Abstract views(3242)
 - HTML views(47)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: