Citation: QIAO Hui, LI Xiao-Qin, XU Hai-Song, KONG Ling-Qiang, PENG Yu. Specificity of Cation-π Interactions in Typical Protein Folds[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2828-2832. doi: 10.3866/PKU.WHXB20100939 shu

Specificity of Cation-π Interactions in Typical Protein Folds

  • Received Date: 29 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(30570427) 和北京市自然科学基金(4092008) 资助项目 (30570427) 和北京市自然科学基金(4092008)

  • In proteins, cation-π interactions are formed between positively charged amino acids (Lys, Arg) and aromatic amino acids(Phe, Tyr, Trp). We investigated the cation-π interactions in two typical folding structures of α/β proteins, namely, the singly wound structure and the doubly wound structure. The results reveal that: (1) The distribution density of cation-π interactions in singly wound structures is about 2.6 times as high as that in doubly wound structures; (2) In singly wound structures, a correlation is observed between the amount of residues and their cation-π interactions while no correlation is observed in doubly wound structures; (3) Lys, Arg and Tyr in singly wound structures participate more easily in cation-π interactions than those in doubly wound structures; (4) Arg-Phe pairs are preferred in doubly wound structures while Arg-Tyr pairs are preferred in singly wound structures; (5) In singly wound structures, 65%of the cation-π interactions formarrays or distribute between the starting point and the end point in the structures.

  • 加载中
    1. [1]

      1. Ma, J. C.; Dougherty, D. A. Chem. Rev., 1997, 97(5): 1303

    2. [2]

      2. Mecozzi, S.;West, A. P.; Dougherty, D. A. J. Am. Chem. Soc, 1996, 118(9): 2307

    3. [3]

      3. Mecozzi, S.; West, A. P.; Dougherty, D. A. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(20): 10566

    4. [4]

      4. Sunner, J.; Nishizawa, K.; Kebarle, P. J. Phys. Chem., 1981, 85 (13): 1814

    5. [5]

      5. Gallivan, J. P.; Dougherty, D. A. Proc. Natl. Acad. Sci. U. S. A., 1999, 96(17): 9459

    6. [6]

      6. Cheng, J. G.; Luo, X. M.; Yan, X. H.; Li, Z.; Tang, Y.; Jiang, H. L.; Zhu,W. L. Sci. China Ser. B-Chem., 2008, 51(8): 709

    7. [7]

      7. Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; ldman, A.; Toker, L.; Silman, I. Science, 1991, 253(5022): 872

    8. [8]

      8. Xiu, X.; Puskar, N. L.; Shanata, J. A. P.; Lester, H. A.; Dougherty, D. A. Nature, 2009, 458(7237): 534

    9. [9]

      9. Dougherty, D. A. Science, 1996, 271(5246): 163

    10. [10]

      10. Prajapati, R. S.; Sirajuddin, M.; Durani, V.; Sreeramulu, S.; Varadarajan, R. Biochemistry, 2006, 45(50): 15000

    11. [11]

      11. Gromiha, M. M. Biophysical Chemistry, 2003, 103(3): 251

    12. [12]

      12. Crowley, P. B.; lovin, A. Protein, 2005, 59(2): 231

    13. [13]

      13. DeVos, A. M.; Ultsch, M.; Kossiakoff, A. A. Science, 1992, 255 (5042): 306

    14. [14]

      14. Pflugrath, J. W.; Wigand, G.; Huber, R.; Vertesy, L. J. Mol. Biol., 1986, 189(2): 383

    15. [15]

      15. Gromiha, M. M.; Santhosh, C.; Ahmad, S. International Journal of Biological Macromolecules, 2004, 34(3): 203

    16. [16]

      16. Gromiha, M. M. Polymer, 2005, 46(3): 983

    17. [17]

      17. Anbarasu, A.; Anand, S.; Mathew, L.; Sethumadhavan, R. International Journal of Biological Macromolecules, 2007, 40(5): 479

    18. [18]

      18. Chakkaravarthi, S.; Gromiha, M. M. Polymer, 2006, 47(2): 709

    19. [19]

      19. Shanthi, V.; Ramanathan, K.; Sethumadhavan, R. Journal of Computer Science&Systems Biology, 2009, 2(1): 51

    20. [20]

      20. Prasad, V. R.; Sathpathy, S. Protoplasma, 2009, 238(1-4): 11

    21. [21]

      21. Wintjens, R.; Liévin, J.; Rooman, M.; Buisine, E. J. Mol. Biol., 2000, 302(2): 395

    22. [22]

      22. http://astral.berkeley.edu/scopseq-1.65.html

    23. [23]

      23. http://capture.caltech.edu/

    24. [24]

      24. Jorgensen,W. L.; Tirado-Rives, J. J. Am. Chem. Soc., 1988, 110 (6): 1657

    25. [25]

      25. Jorgensen,W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc., 1996, 118(45): 11225


  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    10. [10]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    11. [11]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    17. [17]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    20. [20]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

Metrics
  • PDF Downloads(1020)
  • Abstract views(2229)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return