Citation: HU Ren-Zhi, ZHANG Qun, CHEN Yang. Temperature Dependence of Reactions of C2(a3Πu) Radical with Several Unsaturated Hydrocarbons[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2619-2624. doi: 10.3866/PKU.WHXB20100938 shu

Temperature Dependence of Reactions of C2(a3Πu) Radical with Several Unsaturated Hydrocarbons

  • Received Date: 7 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(20673107, 20873133) (20673107, 20873133) 国家重点基础研究发展规划项目(973)(2007CB815203, 2010CB923302) (973)(2007CB815203, 2010CB923302)中国科学院知识创新工程(KJCX2-YW-N24)资助 (KJCX2-YW-N24)

  • We studied the temperature dependence on the gas phase reactions of theC2(a3Πu) radical with several unsaturated hydrocarbons (C2H4 (k1),C2H2 (k2),C3H6 (k3), and 2-C4H8 (k4)) by means of pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique. The bimolecular rate constants for these reactions were obtained in the temperature range of 298-673 K. The obtained kinetics data were used to derive the following Arrhenius expressions: k1(T)=(4.53 ±0.05) ×10-11exp[(196.41 ±5.20)/T], k2(T)=(3.94 ±0.04) ×10-11exp[(143.04 ±4.28)/T], k3(T)=(7.96 ±0.17) ×10-11 exp[(185.10 ±8.86)/T], and k4(T)=(1.04 ±0.02) ×10-10exp[(180.34 ±7.67)/T], where all error estimates are ±2σ and represent the precision of the fit. The observed bimolecular rate constants along with the negative temperature dependences of k(T) allow us to reacha conclusion that the reactions of C2(a3Πu) with these unsaturated hydrocarbons in the temperature range of 298-673 K proceed via an addition mechanism.

     

  • 加载中
    1. [1]

      1. Baronavski, A. P.; McDonald, J. R. J. Chem. Phys., 1977, 66: 3300

    2. [2]

      2. McKellar, A. J. R. Astron. Soc. Can., 1960, 54: 97

    3. [3]

      3. Brault, J. W.; Delbouille, L.; Grevesse, N.; Roland, G.; Sauval, A. J.; Testerman, L. Astron. Astrophys., 1982, 108: 201

    4. [4]

      4. A'Hearn, M. F.; Millis, R. C.; Schleicher, D. O.; Osip, D. J.; Birch, P. V. Icarus, 1995, 118: 223

    5. [5]

      5. Bakker, E. J.; van Dishoeck, E. F.; Waters, L. B. F.M.; Schoenmaker, T. Astron. Astrophys., 1997, 323: 469

    6. [6]

      6. Cecchi-Pestellini, C.; Dalgarno, A. Mon. Not. R. Astron. Soc., 2002, 331: L31

    7. [7]

      7. Oka, T.; Thorburn, J. A.; McCall, B. J.; Friedman, S. D.; Hobbs, L. M.; Sonnentrucker, P.; Welty, D. E.; York, D. G. Astrophys. J., 2003, 582: 823

    8. [8]

      8. Rennick, C. J.; Smith, J. A.; Ashfold, M. N. R.; Orr-Ewing, A. J. Chem. Phys. Lett., 2004, 383: 518

    9. [9]

      9. rdillo-Vazquez, F. J.; Albella, J. M. J. Appl. Phys., 2003, 94: 6085

    10. [10]

      10. Ballik, E. A.; Ramsay, D. A. Astrophys. J., 1963, 137: 84

    11. [11]

      11. Herzberg, G. Molecular spectra and molecular structure I. Spectra of diatomic molecules. Princeton: van Nostrand, 1950

    12. [12]

      12. Krause, H. F. J. Chem. Phys., 1979, 70: 3871

    13. [13]

      13. Donnelly, V. M.; Pasternack, L. Chem. Phys., 1979, 39: 427

    14. [14]

      14. Pasternack, L.; McDonald, J. R. Chem. Phys., 1979, 43: 173

    15. [15]

      15. Reisler, H.; Mangir, M.; Wittig, C. J. Chem. Phys., 1979, 71: 2109

    16. [16]

      16. Reisler, H.; Mangir, M.; Wittig, C. Chem. Phys., 1980, 47: 49

    17. [17]

      17. Mangir, M. S.; Reisler, H.; Wittig, C. J. Chem. Phys., 1980, 73: 829

    18. [18]

      18. Reisler, H.; Mangir, M. S.; Wittig, C. J. Chem. Phys., 1980, 73: 2280

    19. [19]

      19. Pasternack, L.; Baronavski, A. P.; McDonald, J. R. J. Chem. Phys., 1980, 73: 3508

    20. [20]

      20. Pasternack, L.; Pitts,W. M.; McDonald, J. R. Chem. Phys., 1981, 57: 19

    21. [21]

      21. Pitts, W. M.; Pasternack, L.; McDonald, J. R. Chem. Phys., 1982, 68: 417

    22. [22]

      22. Kruse, T.; Roth, P. Int. J. Chem. Kin., 1999, 31: 11

    23. [23]

      23. Becker, K. H.; Donner, B.; Dinis, C. M. F.; Geiger, H.; Schmidt, F.; Wiesen, P. Z. Phys. Chem., 2000, 214: 503

    24. [24]

      24. Fontijn, A.; Fernandez, A.; Ristanovic, A.; Randall, M. Y.; Jankowiak, J. T. J. Phys. Chem. A, 2001, 105: 3182

    25. [25]

      25. Ristanovic, A.; Fernandez, A.; Fontijn, A. J. Phys. Chem. A, 2002, 106: 8291

    26. [26]

      26. Huang, C. S.; Zhu, Z. Q.; Xin, Y.; Pei, L. S.; Chen, C. X.; Chen, Y. J. Chem. Phys., 2004, 120: 2225

    27. [27]

      27. Huang, C. S.; Zhao, D. F.; Pei, L. S.; Chen, C. X.; Chen, Y. Chem. Phys. Lett., 2004, 389: 230

    28. [28]

      28. Huang, C. S.; Li, Z. X.; Zhao, D. F.; Xin, Y.; Pei, L. S.; Chen, C. X.; Chen, Y. Chin. Sci. Bull., 2004, 49: 438

    29. [29]

      29. Huang, C. S.; Zhu, Z. Q.; Wang, H. L.; Pei, L. S.; Chen, Y. J. Phys. Chem. A, 2005, 109: 3921

    30. [30]

      30. Hu, R. Z.; Zhang, Q.; Chen, Y. J. Chem. Phys., 2010, 132: 164312

    31. [31]

      31. Daugey, N.; Caubet, P.; Bergeat, A.; Costes, M.; Hickson, K. M. Phys. Chem. Chem. Phys., 2008, 10: 729

    32. [32]

      32. Páramo, A.; Canosa, A.; Le Picard, S. D.; Sims, I. R. J. Phys. Chem. A, 2006, 110: 3121

    33. [33]

      33. Páramo, A.; Canosa, A.; Le Picard, S. D.; Sims, I. R. J. Phys. Chem. A, 2008, 112: 9591

    34. [34]

      34. http://webbook.nist. v.

    35. [35]

      35. Ochimizu, T.; Seki, K.; Yagi, M.; Halpern, J. B.; Okabe, H. Chem. Phys. Lett., 1999, 313: 451

    36. [36]

      36. Berman, M. R.; Fleming, J. W.; Harvey, A. B.; Lin, M. C. Chem. Phys., 1982, 73: 27

    37. [37]

      37. Lichtin, D.; Lin, M. C. Chem. Phys., 1986, 104: 325

    38. [38]

      38. Atkinson, R. Chem. Rev., 1985, 85: 69

    39. [39]

      39. Gu, X. B.; Guo, Y.; Zhang, F. T.; Mebel, A. M.; Kaiser, R. I. Faraday Discuss., 2006, 133: 245

    40. [40]

      40. Gu, X. B.; Guo, Y.; Zhang, F. T.; Mebel, A. M.; Kaiser, R. I. Chem. Phys., 2007, 335: 95

    41. [41]

      41. Kaiser, R. I.; Balucani, N.; Charkin, D. O.; Mebel, A. M. Chem. Phys. Lett., 2003, 382: 112

    42. [42]

      42. Gu, X. B.; Guo, Y.; Mebel, A. M.; Kaiser, R. I. J. Phys. Chem. A, 2006, 110: 11265

    43. [43]

      43. Leonori, F.; Petrucci, R.; Hickson, K. M.; Se lini, E.; Le Picard, S. D.; Balucani, N.; Foggi, P.; Casavecchia, P. Planet. Space Sci., 2008, 56: 1658

    44. [44]

      44. Kaiser, R. I.; Le, T. N.; Nguyen, T. L.; Mebel, A. M.; Balucani, N.; Lee, Y. T.; Stahl, F.; Schleyer, P. V.; Schaefer, H. F. Faraday Discuss., 2001, 119: 51

    45. [45]

      45. Guo, Y.; Kislov, V. V.; Gu, X.; Zhang, F.; Mebel, A. M.; Kaiser, R. I. Astrophys. J., 2006, 653: 1577

    46. [46]

      46. McKee, K.; Blitz, M. A.; Hughes, K. J.; Pilling, M. J.; Qian, H. B.; Taylor, A.; Seakins, P. W. J. Phys. Chem. A, 2003, 107: 5710

    47. [47]

      47. Choi, N.; Blitz, M. A.; McKee, K.; Pilling, M. J.; Seakins, P. W. Chem. Phys. Lett., 2004, 384: 68

    48. [48]

      48. Gannon, K. L.; Glowacki, D. R.; Blitz, M. A.; Hughes, K. J.; Pilling, M. J.; Seakins, P. W. J. Phys. Chem. A, 2007, 111: 6679


  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    15. [15]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    16. [16]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    17. [17]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

Metrics
  • PDF Downloads(1087)
  • Abstract views(2766)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return