Citation: JIANG Liang-Xing, ZHONG Shui-Ping, LAI Yan-Qing, LV Xiao-Jun, HONG Bo, PENG Hong-Jian, ZHOU Xiang-Yang, LI Jie, LIU Ye-Xiang. Effect of Current Densities on the Electrochemical Behavior of a Flat Plate Pb-Ag Anode for Zinc Electrowinning[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2369-2374. doi: 10.3866/PKU.WHXB20100935
-
We studied the anodic potential, corrosion rate, and anodic passive layer of a flat plate Pb-Ag (0.8% (mass fraction, w) anode over a long period of polarization under different current densities. Additionally, the cathode current efficiency and quality of the zinc product in the ZnSO4-MnSO4-H2SO4 electrolyte were also studied. The morphology of the anodic passive layer was characterized by scanning electron microscopy (SEM). The results show that the current density greatly affects the electrochemical behavior of the anode and the cathode during zinc electrowinning irrespective of Mn2+. With an increase in the current density, the anodic potential, corrosion rate, cathode current efficiency, and quantity of anode slime increased while the Pb content in the zinc product decreased. When the current density decreased from 500 to 200 A·m-2 in the ZnSO4-MnSO4-H2SO4 electrolyte, the stable anodic potential and the corrosion rate decreased by 64 mV and 40%, respectively. Under a lower current density, the anodic potential stabilizes more easily and the passive layer that forms on the surface of the anode is denser and it adheres better to the base body, which is advantageous for the reduction of the corrosion rate. Therefore, to reduce the anodic potential, corrosion rate, and the quantity of anode slime, increase the cathode current efficiency and quality of zinc product, we suggested that the ideal working condition for zinc electrowinning is a higher cathodic current density and lower anodic current density.
-
-
[1]
1. Petrova, M.; Stefanov, Y.; Noncheva, Z.; Dobrev, T.; Rashkov, S.British Corrosion Journal, 1999, 34(3): 198
-
[2]
2. Stefanov, Y.; Dobrev, T. Transactions of the Institute of MetalFinishing, 2005, 83(6): 296
-
[3]
3. Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.;Mirkova, L.; Vermeersch, R.; Demaerel, J. P. Hydrometallurgy,2000, 57: 109
-
[4]
4. Rashkov, S.; Dobrev, T.; Noncheva, Z.; Stefanov, Y.; Rashkova,B.; Petrova, M. Hydrometallurgy, 1999, 52: 223
-
[5]
5. Newnham, R. H. Journal of Applied Electrochemistry, 1992, 22:116
-
[6]
6. Zhong, S. P.; Lai, Y. Q.; Jiang, L. X.; Lü, X. J.; Chen, P. R.; Li, J.;Liu, Y. X. Journal of Central South University of Technology,2009, 16(2): 236
-
[7]
7. Lupi, C.; Pilone, D. Hydrometallurgy, 1997, 44: 347
-
[8]
8. Rashkov, S.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.;Kunchev, N.; Petrov, D.; Vlaev, S. T.; Mihnev, V.; Zarev, S.;Georgieva, L.; Buttinelli, D. Hydrometallurgy, 1996, 40: 319
-
[9]
9. Camurri, C. P.; López, M. J.; Pagliero, A. N.; Vergara, F. G.Materials Characterization, 2001, 47: 105
-
[10]
10. Li, B. S.; Lin, A.; Gan, F. X. Trans. Nonferrous Met. Soc. China,2006, 16(5): 1193
-
[11]
11. Hu, J. M.; Zhang, J. Q.; Cao, C. N. International Journal ofHydrogen Energy, 2004, 29(8): 791
-
[12]
12. Stefanov, Y.; Dobrev, T. Transactions of the Institute of MetalFinishing, 2005, 83(6): 291
-
[13]
13. Cattarin, S.; Guerriero, P.; Musiani, M. Electrochimica Acta, 2001,46: 4229
-
[14]
14. Shrivastava, P.; Moats, M. S. Journal of the ElectrochemicalSociety, 2008, 155(7): E101
-
[15]
15. de Mussy, J. P. G.; MacPherson, J. V.; Delplancke, J. L.Electrochimica Acta, 2003, 48: 1131
-
[16]
16. Felder, A.; Prengaman R. D. JOM, 2006, 58(10): 28
-
[17]
17. Zhong, S. P.; Lai, Y. Q.; Jiang, L. X.; Lü, X. J.; Chen, P. R.; Li, J.;Liu, Y. X. Journal of Central South University of Technology,2008, 15(6): 757
-
[18]
18. Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.;Liu, Y. X. Hydrometallurgy, 2010, 102: 73
-
[19]
19. Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.;Liu, Y. X. Hydrometallurgy, 2010, 102: 81
-
[20]
20. Peng, R. Q.; Ren, H. J.; Zhang, X. P. Metallurgy of lead and zinc.Beijing: Science Press, 2003: 413 [彭容秋, 任鸿九,张训鹏.铅锌冶金学.北京:科学出版社, 2003: 413]
-
[21]
21. Mei, G. G.; Wang, R. D.; Zhou, J. Y.; Wang, H. Hyrometallurgy ofzinc. Changsha: Central South University Press, 2001: 340-402[梅光贵,王德润, 周敬元, 王辉.湿法炼锌学,长沙:中南大学出版社, 2001: 340-402]
-
[22]
22. Zhang, Y. P. Hydrometallurgy of China, 2001, 20(4): 169[张玉萍.湿法冶金, 2001, 20(4): 169]
-
[23]
23. Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.;Mirkova, L.; Vermeersch, R.; Demaerel, J. P. Hydrometallurgy,2000, 57: 125
-
[24]
24. Nguyen, T.; Atrens, A. Hydrometallurgy, 2009, 96: 14
-
[25]
25. Pu, Y.; O'Keefe, T. J. Journal of the Electrochemical Society,2002, 149(5): 558
-
[1]
-
-
[1]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[2]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[3]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[4]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[5]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[6]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[7]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[8]
Shuyong Zhang , Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078
-
[9]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[10]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[11]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[12]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[13]
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
-
[14]
Runze Xu , Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083
-
[15]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[16]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[17]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[18]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[19]
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
-
[20]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[1]
Metrics
- PDF Downloads(1472)
- Abstract views(2992)
- HTML views(13)