Citation: JIANG Liang-Xing, ZHONG Shui-Ping, LAI Yan-Qing, LV Xiao-Jun, HONG Bo, PENG Hong-Jian, ZHOU Xiang-Yang, LI Jie, LIU Ye-Xiang. Effect of Current Densities on the Electrochemical Behavior of a Flat Plate Pb-Ag Anode for Zinc Electrowinning[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2369-2374. doi: 10.3866/PKU.WHXB20100935 shu

Effect of Current Densities on the Electrochemical Behavior of a Flat Plate Pb-Ag Anode for Zinc Electrowinning

  • Received Date: 12 April 2010
    Available Online: 27 July 2010

    Fund Project: 国家自然科学基金(50954006)资助项目 (50954006)

  • We studied the anodic potential, corrosion rate, and anodic passive layer of a flat plate Pb-Ag (0.8% (mass fraction, w) anode over a long period of polarization under different current densities. Additionally, the cathode current efficiency and quality of the zinc product in the ZnSO4-MnSO4-H2SO4 electrolyte were also studied. The morphology of the anodic passive layer was characterized by scanning electron microscopy (SEM). The results show that the current density greatly affects the electrochemical behavior of the anode and the cathode during zinc electrowinning irrespective of Mn2+. With an increase in the current density, the anodic potential, corrosion rate, cathode current efficiency, and quantity of anode slime increased while the Pb content in the zinc product decreased. When the current density decreased from 500 to 200 A·m-2 in the ZnSO4-MnSO4-H2SO4 electrolyte, the stable anodic potential and the corrosion rate decreased by 64 mV and 40%, respectively. Under a lower current density, the anodic potential stabilizes more easily and the passive layer that forms on the surface of the anode is denser and it adheres better to the base body, which is advantageous for the reduction of the corrosion rate. Therefore, to reduce the anodic potential, corrosion rate, and the quantity of anode slime, increase the cathode current efficiency and quality of zinc product, we suggested that the ideal working condition for zinc electrowinning is a higher cathodic current density and lower anodic current density.

  • 加载中
    1. [1]

      1. Petrova, M.; Stefanov, Y.; Noncheva, Z.; Dobrev, T.; Rashkov, S.British Corrosion Journal, 1999, 34(3): 198

    2. [2]

      2. Stefanov, Y.; Dobrev, T. Transactions of the Institute of MetalFinishing, 2005, 83(6): 296

    3. [3]

      3. Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.;Mirkova, L.; Vermeersch, R.; Demaerel, J. P. Hydrometallurgy,2000, 57: 109

    4. [4]

      4. Rashkov, S.; Dobrev, T.; Noncheva, Z.; Stefanov, Y.; Rashkova,B.; Petrova, M. Hydrometallurgy, 1999, 52: 223

    5. [5]

      5. Newnham, R. H. Journal of Applied Electrochemistry, 1992, 22:116

    6. [6]

      6. Zhong, S. P.; Lai, Y. Q.; Jiang, L. X.; Lü, X. J.; Chen, P. R.; Li, J.;Liu, Y. X. Journal of Central South University of Technology,2009, 16(2): 236

    7. [7]

      7. Lupi, C.; Pilone, D. Hydrometallurgy, 1997, 44: 347

    8. [8]

      8. Rashkov, S.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.;Kunchev, N.; Petrov, D.; Vlaev, S. T.; Mihnev, V.; Zarev, S.;Georgieva, L.; Buttinelli, D. Hydrometallurgy, 1996, 40: 319

    9. [9]

      9. Camurri, C. P.; López, M. J.; Pagliero, A. N.; Vergara, F. G.Materials Characterization, 2001, 47: 105

    10. [10]

      10. Li, B. S.; Lin, A.; Gan, F. X. Trans. Nonferrous Met. Soc. China,2006, 16(5): 1193

    11. [11]

      11. Hu, J. M.; Zhang, J. Q.; Cao, C. N. International Journal ofHydrogen Energy, 2004, 29(8): 791

    12. [12]

      12. Stefanov, Y.; Dobrev, T. Transactions of the Institute of MetalFinishing, 2005, 83(6): 291

    13. [13]

      13. Cattarin, S.; Guerriero, P.; Musiani, M. Electrochimica Acta, 2001,46: 4229

    14. [14]

      14. Shrivastava, P.; Moats, M. S. Journal of the ElectrochemicalSociety, 2008, 155(7): E101

    15. [15]

      15. de Mussy, J. P. G.; MacPherson, J. V.; Delplancke, J. L.Electrochimica Acta, 2003, 48: 1131

    16. [16]

      16. Felder, A.; Prengaman R. D. JOM, 2006, 58(10): 28

    17. [17]

      17. Zhong, S. P.; Lai, Y. Q.; Jiang, L. X.; Lü, X. J.; Chen, P. R.; Li, J.;Liu, Y. X. Journal of Central South University of Technology,2008, 15(6): 757

    18. [18]

      18. Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.;Liu, Y. X. Hydrometallurgy, 2010, 102: 73

    19. [19]

      19. Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.;Liu, Y. X. Hydrometallurgy, 2010, 102: 81

    20. [20]

      20. Peng, R. Q.; Ren, H. J.; Zhang, X. P. Metallurgy of lead and zinc.Beijing: Science Press, 2003: 413 [彭容秋, 任鸿九,张训鹏.铅锌冶金学.北京:科学出版社, 2003: 413]

    21. [21]

      21. Mei, G. G.; Wang, R. D.; Zhou, J. Y.; Wang, H. Hyrometallurgy ofzinc. Changsha: Central South University Press, 2001: 340-402[梅光贵,王德润, 周敬元, 王辉.湿法炼锌学,长沙:中南大学出版社, 2001: 340-402]

    22. [22]

      22. Zhang, Y. P. Hydrometallurgy of China, 2001, 20(4): 169[张玉萍.湿法冶金, 2001, 20(4): 169]

    23. [23]

      23. Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.;Mirkova, L.; Vermeersch, R.; Demaerel, J. P. Hydrometallurgy,2000, 57: 125

    24. [24]

      24. Nguyen, T.; Atrens, A. Hydrometallurgy, 2009, 96: 14

    25. [25]

      25. Pu, Y.; O'Keefe, T. J. Journal of the Electrochemical Society,2002, 149(5): 558


  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    5. [5]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    8. [8]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    9. [9]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    10. [10]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    11. [11]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    13. [13]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    14. [14]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    20. [20]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

Metrics
  • PDF Downloads(1472)
  • Abstract views(3070)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return