Citation: ZHU Su-Hua, YAN Liu-Ming, JI Xiao-Bo, SHAO Chang-Le, LU Wen-Cong. Electroosmotic Drag of Water in Hydrated Potassium Perfluorosulfonated Polymer Membrane in External Electric Fields[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2659-2665. doi: 10.3866/PKU.WHXB20100934 shu

Electroosmotic Drag of Water in Hydrated Potassium Perfluorosulfonated Polymer Membrane in External Electric Fields

  • Received Date: 29 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(20873081) (20873081)上海市科委纳米专项(0952nm01300)资助项目 (0952nm01300)

  • The electroosmotic drag and the corresponding mechanism of water molecules in hydrated potassiumperfluorosulfonate electrolyte polymer membrane were studied using molecular dynamics simulations, and therelationship between the membrane structure and electroosmotic drag characteristics was analyzed. It is concluded thatvelocities of both H2O and K+ obey the Maxwell velocity distribution function without external electric field applied. Ifan appropriate electric field is applied, the velocities of H2O and K+ still obey the Maxwell velocity distribution in thedirection perpendicular to the electric field, and obey the peak shifted Maxwell velocity distribution in the directionparallel to the electric field. The peak shifting velocities coincide with the average transport velocities of H2O and K+ induced by the applied electric field, and could be applied to evaluate the electroosmotic drag coefficient of water. Theresults also show that the average number of water molecules in the first coordination shell of K + is 4.04, and theaverage transport velocity of these water molecules is about 57% of that of K +. The electroosmotic drag coefficientcontributed by these water molecules is about 77% of total the electroosmotic drag coefficient(2.97) .

  • 加载中
    1. [1]

      1. Paddison, S. J. Annu. Rev. Mater. Res., 2003, 33(1): 289

    2. [2]

      2. Gierke, T. D.; Munn, G. E.; Wilson, F. C. J. Polym. Sci. Polym. Phys. Ed., 1981, 19(11): 1687

    3. [3]

      3. Agmon, N. Chem. Phys. Lett., 1995, 244(5-6): 456

    4. [4]

      4. Schaetzel, P.; Nguyen, Q. T.; Riffault, B. J. Membr. Sci., 2004, 240(1-2): 25

    5. [5]

      5. Nilson, R. H.; Griffiths, S. K. J. Chem. Phys., 2006, 125(16): 164510

    6. [6]

      6. Zhao, X.; Huang, X. R.; Sun, C. C. Chem. J. Chin. Univ., 2008, 29 (4): 819 [赵熹, 黄旭日,孙家锺.高等学校化学学报, 2008, 29(4): 819]

    7. [7]

      7. Gao, T. H.; Liu, R. S.; Zhou, L. L.; Tian, Z. A.; Xie, Q. Acta Phys.- Chim. Sin., 2009, 25(10): 2093 [高廷红,刘让苏,周丽丽, 田泽 安, 谢泉.物理化学学报, 2009, 25(10): 2093]

    8. [8]

      8. Tao, C. G.; Feng, H. J.; Zhou, J.; Lü, L. H.; Lu, X. H. Acta Phys.- Chim. Sin., 2009, 25(7): 1373 [陶长贵,冯海军,周健, 吕玲 红, 陆小华.物理化学学报, 2009, 25(7): 1373]

    9. [9]

      9. Freund, J. B. J. Chem. Phys., 2002, 116(5): 2194

    10. [10]

      10. Qiao, R.; Aluru, N. R. Phys. Rev. Lett., 2004, 92(19): 198301

    11. [11]

      11. Yan, L.; Ji, X.; Lu, W. J. Phys. Chem. B, 2008, 112(18): 5602

    12. [12]

      12. Ji, X.; Yan, L.; Zhu, S.; Zhang, L.; Lu, W. J. Phys. Chem. B, 2008, 112(49): 15616

    13. [13]

      13. Yan, L.; Shao, C.; Ji, X. J. Comput. Chem., 2009, 30(9): 1361

    14. [14]

      14. Jorgensen,W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc., 1996, 118(45): 11225

    15. [15]

      15. Yan, L.; Zhu, S.; Ji, X.; Lu, W. J. Phys. Chem. B, 2007, 111(23): 6357

    16. [16]

      16. Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys., 1983, 79(2): 926

    17. [17]

      17. Lenart, P. J.; Jusufi, A.; Panagiotopoulos, A. Z. J. Chem. Phys., 2007, 126(4): 044509

    18. [18]

      18. Smith, W.; Forester, T. R. J. Mol. Graph., 1996, 14(3): 136

    19. [19]

      19. Verlet, L. Phys. Rev., 1967, 159(1): 98

    20. [20]

      20. Nosé, S. Mol. Phys., 1984, 52(2): 255

    21. [21]

      21. Hoover, W. G. Phys. Rev. A, 1985, 31(3): 1695

    22. [22]

      22. Blake, N. P.; Petersen, M. K.; Voth, G. A.; Metiu, H. J. Phys. Chem. B, 2005, 109(51): 24244

    23. [23]

      23. Kreuer, K. D. J. Membr. Sci., 2001, 185(1): 29

    24. [24]

      24. Mohazzabi, P.; Helvey, S. L.; McCumber, J. Physica A, 2002, 316 (1-4): 314

    25. [25]

      25. Arias, J. L.; Ruiz, M. A.; Gallardo, V.; Delgado, A. V. J. Control. Release, 2008, 125(1): 50

    26. [26]

      26. Fang, C.; Wu, B.; Zhou, X. Electrophoresis, 2004, 25(2): 375


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    16. [16]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

Metrics
  • PDF Downloads(1303)
  • Abstract views(3063)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return