Citation: LI Jin, XU Zhao-Yi, LI Jiu-Yi, JIAO Di. Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2638-2646. doi: 10.3866/PKU.WHXB20100927 shu

Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment

  • Received Date: 24 February 2010
    Available Online: 27 September 2010

    Fund Project: 大唐国际发电股份有限公司项目(TX06-15)资助 (TX06-15)

  • The growth characteristics of sulfate reducing bacteria (SRB) in real reclaimed water were studied. Characteristics of the biofilm and its main components on the surface of stainless steel 304 (SS304) sample immersed in reclaimed water with SRB, the electrochemical behavior of the interface between the SS304 sample and the biofilm were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The results show that this strain of SRB can survive in reclaimed water. A biofilm formed on the surface of SS304 and consisted of microbial cells, a carbohydrate component from extracellular polymeric substances (EPS) and a corrosion product such as FeS. During the early immersion period (before 7d), the impedance value mainly originated from the contribution of passivation film on the SS304 electrode surface. During the later immersion period (after 14 d), the impedance value was mainly due to the combined effect of the passivation filmand the biofilmon the SS304 electrode surface.

  • 加载中
    1. [1]

      1. Beech,I. B.; Sunner, J. Biocorrosion, 2004, 15: 181

    2. [2]

      2. Moreno, D. A.; Ibars, J. R.; Ranninger, C.; Videla, H. A. Corrosion, 1992, 48(3):226

    3. [3]

      3. Stott, J. F. D. Corrosion Sci., 1993, 35: 667

    4. [4]

      4. Wingender, J.; Neu, T. R.; Flemming, H. C. Microbial extracellular polymerics substances: characterisation, structure and function. Berlin: Springer Press, 1999

    5. [5]

      5. Sheng, X. X.; Ting, Y. P.; Pehkonen, S. O. Corrosion Sci., 2007, 49: 2159

    6. [6]

      6. Dexter, S. C. Corrosion test and standard: application and interpretation. In: Baboian, R. ASTM. Philadephia: PA, 1995

    7. [7]

      7. Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. F. Appl. Environ. Microbiol., 2002, 19(1): 65

    8. [8]

      8. nza'lez, J. E. G.; Santana, F. J. H.; Mirza-Rosca, J. C. Corrosion Sci., 1998, 40: 2141

    9. [9]

      9. Buchanan, R. A.; Stansbury, E. E. Fundamentals of coupled electrochemical reactions as related to microbially influenced corrosion [C]// Dowling, N. J.; Mittleman, M. W.; Danko, J. C. Microbially influenced corrosion and biodeterioration. Knoxville: TN, 1991: 5, 33

    10. [10]

      10. Videla, H. A.; de Mele, M. F. L.; Brankevich, G. J. Biofouling and corrosion of stainless steel and 70/30 copper nickel samples after several weeks of immersion in seawater [C]//Videla, H. NACE International, Houston, 1989

    11. [11]

      11. Videla, H. A. Int. Biodeterior. Biodegrad., 2001, 48:176

    12. [12]

      12. Postgate, J. R. The sulfate reducing bacteria. Cambridge: CUPress, 1984

    13. [13]

      13. Ma, F.; Ren, N. Q.; Yang, J. X. Pollution control microbiology experiment. Harbin: Harbin Institute of Technology Press, 2002 [马放,任南琪, 杨基先. 污染控制微生物学实验.哈尔滨: 哈尔 滨工业大学出版社, 2002]

    14. [14]

      14. Hardy, J. A. Br. Corros. J., 1983, 18(4): 190

    15. [15]

      15. von Wolzogen Kukr, C. A. H.; van Vlugt, L. S. Water, 1934, 18: 147

    16. [16]

      16. Marcus, P. Electrochim. Acta, 1998, 43(1-2): 109

    17. [17]

      17. Little, B.; Wagner, P. Electrochim. Acta, 1992, 37(12): 2185

    18. [18]

      18. Sanders, P. F.; Hamilton, W. A. Biological and corrosion activities of sulphate——reducing bacteria within natural biofilms [C]// Dexter, S. C. Biologically induced corrosion. NACE International, Houston: TX, 1986: 47

    19. [19]

      19. Beech, I. B. Microbiol. Today, 2003, 30: 115

    20. [20]

      20. Fang, H. H. P.; Xu, L. C.; Chan, K. Y. Water Res., 2002, 36: 4709

    21. [21]

      21. Beech, I. B.; Sunner, J. Curr. Opin. Biotechnol., 2004, 15(3): 181

    22. [22]

      22. Kinzler, K.; Gehrke, T.; Telegdi, J.; Sand, W. Hydrometall, 2003, 71: 83

    23. [23]

      23. Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Appl. Microbiol. Biotechnol., 2003, 63: 239

    24. [24]

      24. Chler, S. M.; Vogel, A.; Mathiece, H. J. Corrosion Sci., 1991, 32: 925


  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    6. [6]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    9. [9]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    18. [18]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    19. [19]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(1620)
  • Abstract views(3038)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return