Citation:
LI Jin, XU Zhao-Yi, LI Jiu-Yi, JIAO Di. Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment[J]. Acta Physico-Chimica Sinica,
;2010, 26(10): 2638-2646.
doi:
10.3866/PKU.WHXB20100927
-
The growth characteristics of sulfate reducing bacteria (SRB) in real reclaimed water were studied. Characteristics of the biofilm and its main components on the surface of stainless steel 304 (SS304) sample immersed in reclaimed water with SRB, the electrochemical behavior of the interface between the SS304 sample and the biofilm were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The results show that this strain of SRB can survive in reclaimed water. A biofilm formed on the surface of SS304 and consisted of microbial cells, a carbohydrate component from extracellular polymeric substances (EPS) and a corrosion product such as FeS. During the early immersion period (before 7d), the impedance value mainly originated from the contribution of passivation film on the SS304 electrode surface. During the later immersion period (after 14 d), the impedance value was mainly due to the combined effect of the passivation filmand the biofilmon the SS304 electrode surface.
-
Keywords:
- Stainless steel 304,
- Sulfate reducing bacteria,
- Biofilm,
- AFM,
- EIS
-
References
-
[1]
1. Beech,I. B.; Sunner, J. Biocorrosion, 2004, 15: 181
-
[2]
2. Moreno, D. A.; Ibars, J. R.; Ranninger, C.; Videla, H. A. Corrosion, 1992, 48(3):226
-
[3]
3. Stott, J. F. D. Corrosion Sci., 1993, 35: 667
-
[4]
4. Wingender, J.; Neu, T. R.; Flemming, H. C. Microbial extracellular polymerics substances: characterisation, structure and function. Berlin: Springer Press, 1999
-
[5]
5. Sheng, X. X.; Ting, Y. P.; Pehkonen, S. O. Corrosion Sci., 2007, 49: 2159
-
[6]
6. Dexter, S. C. Corrosion test and standard: application and interpretation. In: Baboian, R. ASTM. Philadephia: PA, 1995
-
[7]
7. Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. F. Appl. Environ. Microbiol., 2002, 19(1): 65
-
[8]
8. nza'lez, J. E. G.; Santana, F. J. H.; Mirza-Rosca, J. C. Corrosion Sci., 1998, 40: 2141
-
[9]
9. Buchanan, R. A.; Stansbury, E. E. Fundamentals of coupled electrochemical reactions as related to microbially influenced corrosion [C]// Dowling, N. J.; Mittleman, M. W.; Danko, J. C. Microbially influenced corrosion and biodeterioration. Knoxville: TN, 1991: 5, 33
-
[10]
10. Videla, H. A.; de Mele, M. F. L.; Brankevich, G. J. Biofouling and corrosion of stainless steel and 70/30 copper nickel samples after several weeks of immersion in seawater [C]//Videla, H. NACE International, Houston, 1989
-
[11]
11. Videla, H. A. Int. Biodeterior. Biodegrad., 2001, 48:176
-
[12]
12. Postgate, J. R. The sulfate reducing bacteria. Cambridge: CUPress, 1984
-
[13]
13. Ma, F.; Ren, N. Q.; Yang, J. X. Pollution control microbiology experiment. Harbin: Harbin Institute of Technology Press, 2002 [马放,任南琪, 杨基先. 污染控制微生物学实验.哈尔滨: 哈尔 滨工业大学出版社, 2002]
-
[14]
14. Hardy, J. A. Br. Corros. J., 1983, 18(4): 190
-
[15]
15. von Wolzogen Kukr, C. A. H.; van Vlugt, L. S. Water, 1934, 18: 147
-
[16]
16. Marcus, P. Electrochim. Acta, 1998, 43(1-2): 109
-
[17]
17. Little, B.; Wagner, P. Electrochim. Acta, 1992, 37(12): 2185
-
[18]
18. Sanders, P. F.; Hamilton, W. A. Biological and corrosion activities of sulphate——reducing bacteria within natural biofilms [C]// Dexter, S. C. Biologically induced corrosion. NACE International, Houston: TX, 1986: 47
-
[19]
19. Beech, I. B. Microbiol. Today, 2003, 30: 115
-
[20]
20. Fang, H. H. P.; Xu, L. C.; Chan, K. Y. Water Res., 2002, 36: 4709
-
[21]
21. Beech, I. B.; Sunner, J. Curr. Opin. Biotechnol., 2004, 15(3): 181
-
[22]
22. Kinzler, K.; Gehrke, T.; Telegdi, J.; Sand, W. Hydrometall, 2003, 71: 83
-
[23]
23. Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Appl. Microbiol. Biotechnol., 2003, 63: 239
-
[24]
24. Chler, S. M.; Vogel, A.; Mathiece, H. J. Corrosion Sci., 1991, 32: 925
-
[1]
-
-
[1]
1. Beech,I. B.; Sunner, J. Biocorrosion, 2004, 15: 181
-
[2]
2. Moreno, D. A.; Ibars, J. R.; Ranninger, C.; Videla, H. A. Corrosion, 1992, 48(3):226
-
[3]
3. Stott, J. F. D. Corrosion Sci., 1993, 35: 667
-
[4]
4. Wingender, J.; Neu, T. R.; Flemming, H. C. Microbial extracellular polymerics substances: characterisation, structure and function. Berlin: Springer Press, 1999
-
[5]
5. Sheng, X. X.; Ting, Y. P.; Pehkonen, S. O. Corrosion Sci., 2007, 49: 2159
-
[6]
6. Dexter, S. C. Corrosion test and standard: application and interpretation. In: Baboian, R. ASTM. Philadephia: PA, 1995
-
[7]
7. Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. F. Appl. Environ. Microbiol., 2002, 19(1): 65
-
[8]
8. nza'lez, J. E. G.; Santana, F. J. H.; Mirza-Rosca, J. C. Corrosion Sci., 1998, 40: 2141
-
[9]
9. Buchanan, R. A.; Stansbury, E. E. Fundamentals of coupled electrochemical reactions as related to microbially influenced corrosion [C]// Dowling, N. J.; Mittleman, M. W.; Danko, J. C. Microbially influenced corrosion and biodeterioration. Knoxville: TN, 1991: 5, 33
-
[10]
10. Videla, H. A.; de Mele, M. F. L.; Brankevich, G. J. Biofouling and corrosion of stainless steel and 70/30 copper nickel samples after several weeks of immersion in seawater [C]//Videla, H. NACE International, Houston, 1989
-
[11]
11. Videla, H. A. Int. Biodeterior. Biodegrad., 2001, 48:176
-
[12]
12. Postgate, J. R. The sulfate reducing bacteria. Cambridge: CUPress, 1984
-
[13]
13. Ma, F.; Ren, N. Q.; Yang, J. X. Pollution control microbiology experiment. Harbin: Harbin Institute of Technology Press, 2002 [马放,任南琪, 杨基先. 污染控制微生物学实验.哈尔滨: 哈尔 滨工业大学出版社, 2002]
-
[14]
14. Hardy, J. A. Br. Corros. J., 1983, 18(4): 190
-
[15]
15. von Wolzogen Kukr, C. A. H.; van Vlugt, L. S. Water, 1934, 18: 147
-
[16]
16. Marcus, P. Electrochim. Acta, 1998, 43(1-2): 109
-
[17]
17. Little, B.; Wagner, P. Electrochim. Acta, 1992, 37(12): 2185
-
[18]
18. Sanders, P. F.; Hamilton, W. A. Biological and corrosion activities of sulphate——reducing bacteria within natural biofilms [C]// Dexter, S. C. Biologically induced corrosion. NACE International, Houston: TX, 1986: 47
-
[19]
19. Beech, I. B. Microbiol. Today, 2003, 30: 115
-
[20]
20. Fang, H. H. P.; Xu, L. C.; Chan, K. Y. Water Res., 2002, 36: 4709
-
[21]
21. Beech, I. B.; Sunner, J. Curr. Opin. Biotechnol., 2004, 15(3): 181
-
[22]
22. Kinzler, K.; Gehrke, T.; Telegdi, J.; Sand, W. Hydrometall, 2003, 71: 83
-
[23]
23. Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Appl. Microbiol. Biotechnol., 2003, 63: 239
-
[24]
24. Chler, S. M.; Vogel, A.; Mathiece, H. J. Corrosion Sci., 1991, 32: 925
-
[1]
-
-
-
[1]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[2]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[3]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[4]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[5]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[6]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[7]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[8]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[9]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[10]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[11]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[12]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[13]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[14]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[15]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[16]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[17]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[18]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[19]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[20]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[1]
Metrics
- PDF Downloads(1620)
- Abstract views(3082)
- HTML views(5)