Citation: LI Jin, XU Zhao-Yi, LI Jiu-Yi, JIAO Di. Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2638-2646. doi: 10.3866/PKU.WHXB20100927 shu

Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment

  • Received Date: 24 February 2010
    Available Online: 27 September 2010

    Fund Project: 大唐国际发电股份有限公司项目(TX06-15)资助 (TX06-15)

  • The growth characteristics of sulfate reducing bacteria (SRB) in real reclaimed water were studied. Characteristics of the biofilm and its main components on the surface of stainless steel 304 (SS304) sample immersed in reclaimed water with SRB, the electrochemical behavior of the interface between the SS304 sample and the biofilm were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The results show that this strain of SRB can survive in reclaimed water. A biofilm formed on the surface of SS304 and consisted of microbial cells, a carbohydrate component from extracellular polymeric substances (EPS) and a corrosion product such as FeS. During the early immersion period (before 7d), the impedance value mainly originated from the contribution of passivation film on the SS304 electrode surface. During the later immersion period (after 14 d), the impedance value was mainly due to the combined effect of the passivation filmand the biofilmon the SS304 electrode surface.

  • 
    1. [1]

      1. Beech,I. B.; Sunner, J. Biocorrosion, 2004, 15: 181

    2. [2]

      2. Moreno, D. A.; Ibars, J. R.; Ranninger, C.; Videla, H. A. Corrosion, 1992, 48(3):226

    3. [3]

      3. Stott, J. F. D. Corrosion Sci., 1993, 35: 667

    4. [4]

      4. Wingender, J.; Neu, T. R.; Flemming, H. C. Microbial extracellular polymerics substances: characterisation, structure and function. Berlin: Springer Press, 1999

    5. [5]

      5. Sheng, X. X.; Ting, Y. P.; Pehkonen, S. O. Corrosion Sci., 2007, 49: 2159

    6. [6]

      6. Dexter, S. C. Corrosion test and standard: application and interpretation. In: Baboian, R. ASTM. Philadephia: PA, 1995

    7. [7]

      7. Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. F. Appl. Environ. Microbiol., 2002, 19(1): 65

    8. [8]

      8. nza'lez, J. E. G.; Santana, F. J. H.; Mirza-Rosca, J. C. Corrosion Sci., 1998, 40: 2141

    9. [9]

      9. Buchanan, R. A.; Stansbury, E. E. Fundamentals of coupled electrochemical reactions as related to microbially influenced corrosion [C]// Dowling, N. J.; Mittleman, M. W.; Danko, J. C. Microbially influenced corrosion and biodeterioration. Knoxville: TN, 1991: 5, 33

    10. [10]

      10. Videla, H. A.; de Mele, M. F. L.; Brankevich, G. J. Biofouling and corrosion of stainless steel and 70/30 copper nickel samples after several weeks of immersion in seawater [C]//Videla, H. NACE International, Houston, 1989

    11. [11]

      11. Videla, H. A. Int. Biodeterior. Biodegrad., 2001, 48:176

    12. [12]

      12. Postgate, J. R. The sulfate reducing bacteria. Cambridge: CUPress, 1984

    13. [13]

      13. Ma, F.; Ren, N. Q.; Yang, J. X. Pollution control microbiology experiment. Harbin: Harbin Institute of Technology Press, 2002 [马放,任南琪, 杨基先. 污染控制微生物学实验.哈尔滨: 哈尔 滨工业大学出版社, 2002]

    14. [14]

      14. Hardy, J. A. Br. Corros. J., 1983, 18(4): 190

    15. [15]

      15. von Wolzogen Kukr, C. A. H.; van Vlugt, L. S. Water, 1934, 18: 147

    16. [16]

      16. Marcus, P. Electrochim. Acta, 1998, 43(1-2): 109

    17. [17]

      17. Little, B.; Wagner, P. Electrochim. Acta, 1992, 37(12): 2185

    18. [18]

      18. Sanders, P. F.; Hamilton, W. A. Biological and corrosion activities of sulphate——reducing bacteria within natural biofilms [C]// Dexter, S. C. Biologically induced corrosion. NACE International, Houston: TX, 1986: 47

    19. [19]

      19. Beech, I. B. Microbiol. Today, 2003, 30: 115

    20. [20]

      20. Fang, H. H. P.; Xu, L. C.; Chan, K. Y. Water Res., 2002, 36: 4709

    21. [21]

      21. Beech, I. B.; Sunner, J. Curr. Opin. Biotechnol., 2004, 15(3): 181

    22. [22]

      22. Kinzler, K.; Gehrke, T.; Telegdi, J.; Sand, W. Hydrometall, 2003, 71: 83

    23. [23]

      23. Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Appl. Microbiol. Biotechnol., 2003, 63: 239

    24. [24]

      24. Chler, S. M.; Vogel, A.; Mathiece, H. J. Corrosion Sci., 1991, 32: 925


    1. [1]

      1. Beech,I. B.; Sunner, J. Biocorrosion, 2004, 15: 181

    2. [2]

      2. Moreno, D. A.; Ibars, J. R.; Ranninger, C.; Videla, H. A. Corrosion, 1992, 48(3):226

    3. [3]

      3. Stott, J. F. D. Corrosion Sci., 1993, 35: 667

    4. [4]

      4. Wingender, J.; Neu, T. R.; Flemming, H. C. Microbial extracellular polymerics substances: characterisation, structure and function. Berlin: Springer Press, 1999

    5. [5]

      5. Sheng, X. X.; Ting, Y. P.; Pehkonen, S. O. Corrosion Sci., 2007, 49: 2159

    6. [6]

      6. Dexter, S. C. Corrosion test and standard: application and interpretation. In: Baboian, R. ASTM. Philadephia: PA, 1995

    7. [7]

      7. Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. F. Appl. Environ. Microbiol., 2002, 19(1): 65

    8. [8]

      8. nza'lez, J. E. G.; Santana, F. J. H.; Mirza-Rosca, J. C. Corrosion Sci., 1998, 40: 2141

    9. [9]

      9. Buchanan, R. A.; Stansbury, E. E. Fundamentals of coupled electrochemical reactions as related to microbially influenced corrosion [C]// Dowling, N. J.; Mittleman, M. W.; Danko, J. C. Microbially influenced corrosion and biodeterioration. Knoxville: TN, 1991: 5, 33

    10. [10]

      10. Videla, H. A.; de Mele, M. F. L.; Brankevich, G. J. Biofouling and corrosion of stainless steel and 70/30 copper nickel samples after several weeks of immersion in seawater [C]//Videla, H. NACE International, Houston, 1989

    11. [11]

      11. Videla, H. A. Int. Biodeterior. Biodegrad., 2001, 48:176

    12. [12]

      12. Postgate, J. R. The sulfate reducing bacteria. Cambridge: CUPress, 1984

    13. [13]

      13. Ma, F.; Ren, N. Q.; Yang, J. X. Pollution control microbiology experiment. Harbin: Harbin Institute of Technology Press, 2002 [马放,任南琪, 杨基先. 污染控制微生物学实验.哈尔滨: 哈尔 滨工业大学出版社, 2002]

    14. [14]

      14. Hardy, J. A. Br. Corros. J., 1983, 18(4): 190

    15. [15]

      15. von Wolzogen Kukr, C. A. H.; van Vlugt, L. S. Water, 1934, 18: 147

    16. [16]

      16. Marcus, P. Electrochim. Acta, 1998, 43(1-2): 109

    17. [17]

      17. Little, B.; Wagner, P. Electrochim. Acta, 1992, 37(12): 2185

    18. [18]

      18. Sanders, P. F.; Hamilton, W. A. Biological and corrosion activities of sulphate——reducing bacteria within natural biofilms [C]// Dexter, S. C. Biologically induced corrosion. NACE International, Houston: TX, 1986: 47

    19. [19]

      19. Beech, I. B. Microbiol. Today, 2003, 30: 115

    20. [20]

      20. Fang, H. H. P.; Xu, L. C.; Chan, K. Y. Water Res., 2002, 36: 4709

    21. [21]

      21. Beech, I. B.; Sunner, J. Curr. Opin. Biotechnol., 2004, 15(3): 181

    22. [22]

      22. Kinzler, K.; Gehrke, T.; Telegdi, J.; Sand, W. Hydrometall, 2003, 71: 83

    23. [23]

      23. Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Appl. Microbiol. Biotechnol., 2003, 63: 239

    24. [24]

      24. Chler, S. M.; Vogel, A.; Mathiece, H. J. Corrosion Sci., 1991, 32: 925


  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    9. [9]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    10. [10]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    14. [14]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    15. [15]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(1620)
  • Abstract views(3082)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return