Citation: SUN Qian, WANG Jin-Ting, ZHANG Li-Min, YANG Mao-Ping. Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with Amines, Phenols and Alcohols[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2481-2488. doi: 10.3866/PKU.WHXB20100925 shu

Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with Amines, Phenols and Alcohols

  • Received Date: 12 April 2010
    Available Online: 19 July 2010

    Fund Project: 国家自然科学基金(20673108)资助项目 (20673108)

  • The quenching reactions of triplet thioxanthone (TX) by a series of amines, phenols, and alcohols were investigated by laser flash photolysis in deoxygenated acetonitrile. We obtained corresponding transient absorption spectra and quenching rate constants (kq). Fromchanges in the transient absorption spectra, we determine that the electron transfer reactions occur between triplet TX and amines without an active hydrogen while electron/proton transfer reactions occur between triplet TX and amines with an active hydrogen. The appearance of hydrogenated radicals can be regarded as evidence for hydrogen transfer reactions in the TX/phenol and TX/alcohol systems. In the TX/amine systems, the quenching rate constants decreased with an increase in the free energy change (ΔG). This indicates that electron transfer reactions influence the quenching of triplet TX. In the TX/phenol systems, the quenching rate constants decreased with an increase in ΔG firstly, then increased with an increase in phenol cation acidity. This can be explained by considering that charge transfer and hydrogen transfer may play separate but important roles. In the TX/ alcohol system, the quenching rate constants decreased with an increase in the α-C—H bonding energy of alcohols, and this indicates that the α-C—H bonding energy is a key factor during triplet TX quenching. By comparison with previous studies about the quenching reactions of triplet xanthone (XT) and fluorenone (FL) by a series of amines, phenols, and alcohols, it is established that because of a discrepancy in molecular configurations the quenching rate constants decrease according to the following order: XT, TX, and FL.

  • 加载中
    1. [1]

      1. Morlet-Savary, F.; Ley, C.; Jacques, P.; Wieder, F.; Fouassier, J. P. J. Photochem. Photobiol. A-Chem., 1999, 126: 7

    2. [2]

      2. Allonas, X.; Ley, C.; Bibaut, C.; Jacques, P.; Fouassier, J. P. Chem. Phys. Lett., 2000, 322: 483

    3. [3]

      3. Okano, L. T.; Barros, T. C.; Chou, D. T. H.; Bennet, A. J. J. Phys. Chem. B, 2001, 105: 2122

    4. [4]

      4. Satzger, H.; Schmidt, B.; Root, C.; Zinth, W.; Fierz, B.; Krieger, F.; Kiefhaber, T.; Gilch, P. J. Phys. Chem. A, 2004, 108: 10072

    5. [5]

      5. Zhu, Q. Q.; Schnabel, W. J. Chem. Soc. Faraday Trans., 1991, 87: 1531

    6. [6]

      6. Yates, S. F.; Schuster, G. B. J. Org. Chem., 1984, 49: 3349

    7. [7]

      7. Inbar, S.; Linschitz, H.; Cohen, S. G. J. Am. Chem. Soc., 1980, 102: 1419

    8. [8]

      8. Guttenplan, J. B.; Cohen, S. G. J. Am. Chem. Soc., 1972, 94: 4040

    9. [9]

      9. Simon, J. D.; Peters, K. S. J. Am. Chem. Soc., 1981, 103: 6403

    10. [10]

      10. Wang, J. T.; Pan, Y.; Zhang, L. M.; Yu, S. Q. Chinese Journal of Chemical Physics, 2007, 20: 395 [王金婷,潘洋, 张立敏, 俞书勤.化学物理学报, 2007, 20: 395 ]

    11. [11]

      11. Stevenson, J. P.; DeMaria, D.; Reilly, D.; Purvis, J. D.; Graham, M. A.; Lockwood, G.; Drozd, M.; O忆Dwyer, P. J. Cancer Chemother. Pharmacol., 1999, 44: 228

    12. [12]

      12. Izbicka, E.; Lawrence, R.; Davidson, K.; Rake, J. B.; VonHoff, D. D. Invest. New Drugs, 1999, 16: 221

    13. [13]

      13. Pan, Y.; Fu ,Y.; Liu, S. X.; Yu, H. Z.; Gao, Y. H.; Guo, Q. X.; Yu, S. Q. J. Phys. Chem. A, 2006, 110: 7316

    14. [14]

      14. Dalton, J. C.; Mont mery, F. C. J. Am. Chem. Soc., 1974, 96: 6230

    15. [15]

      15. Ferreira, G. C.; Schmitt, C. C.; Neumann, M. G. J. Braz. Chem. Soc., 2006, 17: 905

    16. [16]

      16. Scigalski, F.; Paczkowski, J. Macromol. Chem. Phys., 2008, 209: 1872

    17. [17]

      17. Das, D.; Nath, D. N. J. Phys. Chem. A, 2008, 112: 11619

    18. [18]

      18. Bordwell, F. G.; Cheng, J. P. J. Am. Chem. Soc., 1991, 113: 1736

    19. [19]

      19. Denisov, E. T.; Denisova, T. G. Handbook of antioxidants. Boca Raton: CRC Press, 2000: 24

    20. [20]

      20. Wang, J. T. Laser flash photolysis studies on some organic molecules [D]. Hefei: University of Science and Technology of China, 2009 [王金婷.若干有机分子的激光闪光光解研究[D]. 合肥:中国科学技术大学, 2009]

    21. [21]

      21. Pan, Y.; Sheng, Z. Y.; Ye, X. D.; Ao, Z.; Yu, S. Q. J. Photochem. Photobiol. A-Chem., 2005, 174: 98

    22. [22]

      22. Pan, Y.; Sheng, Z. Y.; Li, J.; Dai, J. H.; Chu, G. S.; Yu, S. Q. Acta Chim. Sin., 2004, 62: 1293 [潘洋, 盛震宇,李江,戴静华, 储高升, 俞书勤.化学学报, 2004, 62: 1293]

    23. [23]

      23. Murov, S. L.; Carmichael, I.; Hug, G. Handbook of photochemistry. 2nd ed. NewYork: Marcel Dekker, 1993: 111, 346-348

    24. [24]

      24. Corrales, T.; Peinado, C.; Catalina, F.; Neumann, M. G.; Allen, N. S.; Rufs, A. M.; Encinas, M. V. Polymer, 2000, 41: 9103

    25. [25]

      25. Bartholomew, R. F.; Davidson, R. S.; Lambeth, P. F.; Mckellar, J. F.; Turner, P. H. J. Chem. Soc. Perkin Trans., 1972, 2: 577

    26. [26]

      26. Das, P. K.; Encinas, M. V.; Steenken, S.; Scaiano, J. C. J. Am. Chem. Soc., 1981, 103: 4162

    27. [27]

      27. Yoshihara, T.; Yamaji, M.; Itoh, T.; Shizuka, H.; Shimokage, T.; Tero-Kubota, S. Phys. Chem. Chem. Phys., 2000, 2: 993

    28. [28]

      28. Rehm, D.; Weller, A. Isr. J. Chem., 1970, 8: 259

    29. [29]

      29. Bard, A. J.; Faulkner, L. R. Electrochemical methods, fundamentals and applications. NewYork: John Wiley, 1980: 701

    30. [30]

      30. (a) Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc., 1981, 103: 7349 (b) Dvorak, V.; Nemec. I.; Zyka, J. J. Microchem. J., 1967, 12: 99 (c) Pan, Y.; Tang, W. J.; Yu, T. Q.; Wang, J. T.; Fu, Y.; Wang, G. W.; Yu, S. Q. J. Lumin., 2007, 126: 421 (d) Nelsen, S. F.; Hinz, P. J. J. Am. Chem. Soc., 1972, 94: 7114

    31. [31]

      31. Herkatroeter, W. G.; Lamula, A. A.; Hammond, G. S. J. Am. Chem. Soc., 1964, 86: 4537

    32. [32]

      32. Cao, X. Z.; Song, T. Y.;Wang, X. Q. Inorganic chemistry. 3rd ed. Beijing: Higher Education Press, 1994: 114-116 [曹锡章, 宋天 佑,王杏乔.无机化学.北京:高等教育出版社, 1994: 114-116]


  • 加载中
    1. [1]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    10. [10]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Bing Yuan Fengli Yu Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032

    15. [15]

      Qian Shao Jiajing Tan Yongmei Chen Jiyue Jing Zhuo Wang . Exploration and Practice on the Management of Extracurricular Innovation Laboratories in Chemistry. University Chemistry, 2024, 39(4): 19-25. doi: 10.3866/PKU.DXHX202310119

    16. [16]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    17. [17]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    18. [18]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Sunting Xuan Hang Shen Xin Wang . Discussion on the Current Situation and Strategies for Academic Master’s Education in Chemistry. University Chemistry, 2024, 39(6): 37-41. doi: 10.3866/PKU.DXHX202401013

Metrics
  • PDF Downloads(1127)
  • Abstract views(2912)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return