Citation: SUN Qian, WANG Jin-Ting, ZHANG Li-Min, YANG Mao-Ping. Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with Amines, Phenols and Alcohols[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2481-2488. doi: 10.3866/PKU.WHXB20100925 shu

Photoinduced Electron and Hydrogen Transfer Reactions of Thioxanthone with Amines, Phenols and Alcohols

  • Received Date: 12 April 2010
    Available Online: 19 July 2010

    Fund Project: 国家自然科学基金(20673108)资助项目 (20673108)

  • The quenching reactions of triplet thioxanthone (TX) by a series of amines, phenols, and alcohols were investigated by laser flash photolysis in deoxygenated acetonitrile. We obtained corresponding transient absorption spectra and quenching rate constants (kq). Fromchanges in the transient absorption spectra, we determine that the electron transfer reactions occur between triplet TX and amines without an active hydrogen while electron/proton transfer reactions occur between triplet TX and amines with an active hydrogen. The appearance of hydrogenated radicals can be regarded as evidence for hydrogen transfer reactions in the TX/phenol and TX/alcohol systems. In the TX/amine systems, the quenching rate constants decreased with an increase in the free energy change (ΔG). This indicates that electron transfer reactions influence the quenching of triplet TX. In the TX/phenol systems, the quenching rate constants decreased with an increase in ΔG firstly, then increased with an increase in phenol cation acidity. This can be explained by considering that charge transfer and hydrogen transfer may play separate but important roles. In the TX/ alcohol system, the quenching rate constants decreased with an increase in the α-C—H bonding energy of alcohols, and this indicates that the α-C—H bonding energy is a key factor during triplet TX quenching. By comparison with previous studies about the quenching reactions of triplet xanthone (XT) and fluorenone (FL) by a series of amines, phenols, and alcohols, it is established that because of a discrepancy in molecular configurations the quenching rate constants decrease according to the following order: XT, TX, and FL.

  • 加载中
    1. [1]

      1. Morlet-Savary, F.; Ley, C.; Jacques, P.; Wieder, F.; Fouassier, J. P. J. Photochem. Photobiol. A-Chem., 1999, 126: 7

    2. [2]

      2. Allonas, X.; Ley, C.; Bibaut, C.; Jacques, P.; Fouassier, J. P. Chem. Phys. Lett., 2000, 322: 483

    3. [3]

      3. Okano, L. T.; Barros, T. C.; Chou, D. T. H.; Bennet, A. J. J. Phys. Chem. B, 2001, 105: 2122

    4. [4]

      4. Satzger, H.; Schmidt, B.; Root, C.; Zinth, W.; Fierz, B.; Krieger, F.; Kiefhaber, T.; Gilch, P. J. Phys. Chem. A, 2004, 108: 10072

    5. [5]

      5. Zhu, Q. Q.; Schnabel, W. J. Chem. Soc. Faraday Trans., 1991, 87: 1531

    6. [6]

      6. Yates, S. F.; Schuster, G. B. J. Org. Chem., 1984, 49: 3349

    7. [7]

      7. Inbar, S.; Linschitz, H.; Cohen, S. G. J. Am. Chem. Soc., 1980, 102: 1419

    8. [8]

      8. Guttenplan, J. B.; Cohen, S. G. J. Am. Chem. Soc., 1972, 94: 4040

    9. [9]

      9. Simon, J. D.; Peters, K. S. J. Am. Chem. Soc., 1981, 103: 6403

    10. [10]

      10. Wang, J. T.; Pan, Y.; Zhang, L. M.; Yu, S. Q. Chinese Journal of Chemical Physics, 2007, 20: 395 [王金婷,潘洋, 张立敏, 俞书勤.化学物理学报, 2007, 20: 395 ]

    11. [11]

      11. Stevenson, J. P.; DeMaria, D.; Reilly, D.; Purvis, J. D.; Graham, M. A.; Lockwood, G.; Drozd, M.; O忆Dwyer, P. J. Cancer Chemother. Pharmacol., 1999, 44: 228

    12. [12]

      12. Izbicka, E.; Lawrence, R.; Davidson, K.; Rake, J. B.; VonHoff, D. D. Invest. New Drugs, 1999, 16: 221

    13. [13]

      13. Pan, Y.; Fu ,Y.; Liu, S. X.; Yu, H. Z.; Gao, Y. H.; Guo, Q. X.; Yu, S. Q. J. Phys. Chem. A, 2006, 110: 7316

    14. [14]

      14. Dalton, J. C.; Mont mery, F. C. J. Am. Chem. Soc., 1974, 96: 6230

    15. [15]

      15. Ferreira, G. C.; Schmitt, C. C.; Neumann, M. G. J. Braz. Chem. Soc., 2006, 17: 905

    16. [16]

      16. Scigalski, F.; Paczkowski, J. Macromol. Chem. Phys., 2008, 209: 1872

    17. [17]

      17. Das, D.; Nath, D. N. J. Phys. Chem. A, 2008, 112: 11619

    18. [18]

      18. Bordwell, F. G.; Cheng, J. P. J. Am. Chem. Soc., 1991, 113: 1736

    19. [19]

      19. Denisov, E. T.; Denisova, T. G. Handbook of antioxidants. Boca Raton: CRC Press, 2000: 24

    20. [20]

      20. Wang, J. T. Laser flash photolysis studies on some organic molecules [D]. Hefei: University of Science and Technology of China, 2009 [王金婷.若干有机分子的激光闪光光解研究[D]. 合肥:中国科学技术大学, 2009]

    21. [21]

      21. Pan, Y.; Sheng, Z. Y.; Ye, X. D.; Ao, Z.; Yu, S. Q. J. Photochem. Photobiol. A-Chem., 2005, 174: 98

    22. [22]

      22. Pan, Y.; Sheng, Z. Y.; Li, J.; Dai, J. H.; Chu, G. S.; Yu, S. Q. Acta Chim. Sin., 2004, 62: 1293 [潘洋, 盛震宇,李江,戴静华, 储高升, 俞书勤.化学学报, 2004, 62: 1293]

    23. [23]

      23. Murov, S. L.; Carmichael, I.; Hug, G. Handbook of photochemistry. 2nd ed. NewYork: Marcel Dekker, 1993: 111, 346-348

    24. [24]

      24. Corrales, T.; Peinado, C.; Catalina, F.; Neumann, M. G.; Allen, N. S.; Rufs, A. M.; Encinas, M. V. Polymer, 2000, 41: 9103

    25. [25]

      25. Bartholomew, R. F.; Davidson, R. S.; Lambeth, P. F.; Mckellar, J. F.; Turner, P. H. J. Chem. Soc. Perkin Trans., 1972, 2: 577

    26. [26]

      26. Das, P. K.; Encinas, M. V.; Steenken, S.; Scaiano, J. C. J. Am. Chem. Soc., 1981, 103: 4162

    27. [27]

      27. Yoshihara, T.; Yamaji, M.; Itoh, T.; Shizuka, H.; Shimokage, T.; Tero-Kubota, S. Phys. Chem. Chem. Phys., 2000, 2: 993

    28. [28]

      28. Rehm, D.; Weller, A. Isr. J. Chem., 1970, 8: 259

    29. [29]

      29. Bard, A. J.; Faulkner, L. R. Electrochemical methods, fundamentals and applications. NewYork: John Wiley, 1980: 701

    30. [30]

      30. (a) Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc., 1981, 103: 7349 (b) Dvorak, V.; Nemec. I.; Zyka, J. J. Microchem. J., 1967, 12: 99 (c) Pan, Y.; Tang, W. J.; Yu, T. Q.; Wang, J. T.; Fu, Y.; Wang, G. W.; Yu, S. Q. J. Lumin., 2007, 126: 421 (d) Nelsen, S. F.; Hinz, P. J. J. Am. Chem. Soc., 1972, 94: 7114

    31. [31]

      31. Herkatroeter, W. G.; Lamula, A. A.; Hammond, G. S. J. Am. Chem. Soc., 1964, 86: 4537

    32. [32]

      32. Cao, X. Z.; Song, T. Y.;Wang, X. Q. Inorganic chemistry. 3rd ed. Beijing: Higher Education Press, 1994: 114-116 [曹锡章, 宋天 佑,王杏乔.无机化学.北京:高等教育出版社, 1994: 114-116]


  • 加载中
    1. [1]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Bing Yuan Fengli Yu Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032

    10. [10]

      Qian Shao Jiajing Tan Yongmei Chen Jiyue Jing Zhuo Wang . Exploration and Practice on the Management of Extracurricular Innovation Laboratories in Chemistry. University Chemistry, 2024, 39(4): 19-25. doi: 10.3866/PKU.DXHX202310119

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Sunting Xuan Hang Shen Xin Wang . Discussion on the Current Situation and Strategies for Academic Master’s Education in Chemistry. University Chemistry, 2024, 39(6): 37-41. doi: 10.3866/PKU.DXHX202401013

    14. [14]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    15. [15]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    20. [20]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

Metrics
  • PDF Downloads(1127)
  • Abstract views(2832)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return