Citation: YU Xiao-Chun, LIN Ke, HU Nai-Yin, ZHOU Xiao-Guo, LIU Shi-Lin. Effects of Salts on theMicrostructure ofMethanol[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2473-2480. doi: 10.3866/PKU.WHXB20100922
-
We studied the effects of salts on the microstructure of liquid methanol using the Raman spectra. We compared the excess Raman spectra of different methanolic salt solutions in the O—H and C—O stretching regions. These regions reflect the interactions between anions (cations) and methanol molecules. In the O—H stretching region, the excess spectra show that the anions interact with methanol molecules by weak hydrogen bonding and the strength of the hydrogen bonds decrease according to the order: CH3OH-CH3OH>Cl--CH3OH>NO- 3 -CH3OH>ClO- 3 -CH3OH. Additionally, no interactions between cations and methanol molecules are apparent, as determined after analysis of this region. In the C—O stretching region, the excess Raman spectra show the interactions between anions (cations) and methanol molecules. The C—O stretching vibration frequencies of methanol that interact with the anions and cations increase according to the order: CH3—OH (anions)3—OH (bulk)3—OH (cations). According to the excess Raman spectra in the C—O stretching region, we fitted the Raman spectra and used the fitting results to determine the solvation numbers in the first solvation shell of the ions. The Raman spectra show that the ions do not affect the microstructure of liquid methanol beyond the first solvation shell at this concentration (~0.005).
-
Keywords:
-
Raman spectrum
, - Anion,
- Cation,
- Methanol,
- First solvation shell
-
-
-
[1]
1. Smedley, S. I. Interpretation of ionic conductivity in liquids. New York: Plenum, 1980
-
[2]
2. Marcus, Y. Ion solvation. Chichester, U. K.: Wiley, 1986
-
[3]
3. Yamauchi, S.; Kanno, H. Chem. Phys. Lett., 1989, 154(3): 248
-
[4]
4. Yamauchi, S.; Kanno, H. J. Phys. Chem., 1990, 94(17): 6594
-
[5]
5. Kanno, H.; Yamauchi, S. J. Raman Spectrosc., 1993, 24(7): 403
-
[6]
6. Honshoh, M.; Kanno, H.; Ueda, T. J. Raman Spectrosc., 1995, 26 (4): 289
-
[7]
7. Kanno, H.; Honsho, M.; Yamauchi, S. Z. Naturforsch., 1995, 50a: 257
-
[8]
8. Hidaka, F.; Yoshimura, Y.; Kanno, H. J. Solution Chem., 2003, 32 (3): 239
-
[9]
9. Abe, N.; Ito, M. J. Raman Spectrosc., 1978, 7(3): 161
-
[10]
10. Symons, M. C. R. J. Chem. Soc. Faraday Trans., 1983, 79: 1273
-
[11]
11. Mochizuki, S.; Wakisaka, A. J. Phys. Chem. A, 2002, 106(20): 5095
-
[12]
12. Jorgensen, W. L.; Bi t, B.; Chandrasekhar, J. J. Am. Chem. Soc., 1982, 104(17): 4584
-
[13]
13. Impey, R. W.; Sprik, M.; Klein, M. L. J. Am. Chem. Soc., 1987, 109(20): 5900
-
[14]
14. Pagliai, M.; Cardini, G.; Schettino, V. J. Phys. Chem. B, 2005, 109 (15): 7475
-
[15]
15. Torii, H. J. Phys. Chem. A, 1999, 103(15): 2843
-
[16]
16. Lin, K.; Zhou, X. G.; Luo, Y.; Liu, S. L. J. Phys. Chem. B, 2010, 114(10): 3567
-
[17]
17. Dixit, S.; Poon, W. C. K.; Crain, J. J. Phys.-Condes. Matter, 2000, 12(21): L323
-
[18]
18. Musso, M.; Torii, H.; Ottaviani, P.; Asenbaum, A.; Giorgini, M. G. J. Phys. Chem. A, 2002, 106(43): 10152
-
[19]
19. Max, J. J.; Chapados, C. J. Chem. Phys., 2009, 130(12): 124513
-
[20]
20. Miller, A. G.; MacKlin, J. W. J. Phys. Chem., 1985, 89(7): 1193
-
[21]
21. Marcus, Y.; Hefter, G. Chem. Rev., 2006, 106(11): 4585
-
[22]
22. Li, Q. Z.; Wu, G. S.; Yu, Z. W. J. Am. Chem. Soc., 2006, 128(5): 1438
-
[23]
23. Li, Q. Z.; Wang, N. N.; Zhou, Q.; Sun, S. Q.; Yu, Z. W. Appl. Spectrosc., 2008, 62(2): 166
-
[24]
24. Wang, N. N.; Jia, Q.; Li, Q. Z.; Yu, Z. W. J. Mol. Struct., 2008, 883-884: 55
-
[25]
25. Zhang, Q. G.; Wang, N. N.; Yu, Z. W. J. Phys. Chem. B, 2010, 114(14): 4747
-
[26]
26. Yu, Y. Q.; Lin, K.; Zhou, X. G.; Wang, H.; Liu, S. L.; Ma, X. X. J. Raman Spectrosc., 2007, 38(9): 1206
-
[27]
27. Yu, Y. Q.; Lin, K.; Zhou, X. G.; Wang, H.; Liu, S. L.; Ma, X. X. J. Phys. Chem. C, 2007, 111(25): 8971
-
[28]
28. Barthel, J.; Neueder, R.; Poepke, H.; Wittmann, H. J. Solution Chem., 1998, 27(12): 1055
-
[29]
29. Wahab, A.; Mahiuddin, S. Can. J. Chem., 2002, 80(2): 175
-
[30]
30. Ihmels, E. C.; Safarov, J. T. J. Chem. Thermodyn., 2006, 38(11): 1443
-
[31]
31. Wawer, J.; Krakowiak, J.; Grzybkowski, W. J. Chem. Thermodyn., 2008, 40(8): 1193
-
[32]
32. Wahab, A.; Mahiuddin, S. J. Chem. Eng. Data, 2009, 54(2): 436
-
[33]
33. Stygar, J.; Zukowska, G.; Wieczorek, W. Solid State Ionics, 2005, 176(35-36): 2645
-
[34]
34. Wang, Z. X.; Huang, B. Y.; Wang, S. M.; Xue, R. J.; Huang, X. J.; Chen, L. Q. Electrochim. Acta, 1997, 42(17): 2611
-
[35]
35. Markarian, S. A.; Gabrielian, L. S.; Zatikyan, A. L.; Bonora, S.; Trinchero, A. Vib. Spectro., 2005, 39(2): 220
-
[36]
36. Ozutsumi, K.; Ohtaki, H. Pure Appl. Chem., 2004, 76(1): 91
-
[37]
37. Yamagami, M.; Wakita, H.; Yamaguchi, T. J. Chem. Phys., 1995, 103(18): 8174
-
[38]
38. Megyes, T.; Grosz, T.; Radnai, T.; Bako, I.; Palinkas, G. J. Phys. Chem. A, 2004, 108(35): 7261
-
[39]
39. Soper, A. K.; Weckstr觟m, K. Biophys. Chem., 2006, 124(3): 180
-
[40]
40. Smith, J. D.; Saykally, R. J.; Geissler, P. L. J. Am. Chem. Soc., 2007, 129(45): 13847
-
[41]
41. Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. J. Chem. Phys., 2003, 119(23): 12457
-
[1]
-
-
[1]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[2]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[3]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[4]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[5]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[6]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[7]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[8]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[9]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[10]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[11]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[12]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[13]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[14]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[15]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[16]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[17]
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
-
[18]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[19]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[20]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[1]
Metrics
- PDF Downloads(1083)
- Abstract views(3124)
- HTML views(7)