Citation: YU Xiao-Chun, LIN Ke, HU Nai-Yin, ZHOU Xiao-Guo, LIU Shi-Lin. Effects of Salts on theMicrostructure ofMethanol[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2473-2480. doi: 10.3866/PKU.WHXB20100922 shu

Effects of Salts on theMicrostructure ofMethanol

  • Received Date: 25 May 2010
    Available Online: 15 July 2010

    Fund Project: 国家自然科学基金(20873131, 20928002) (20873131, 20928002)国家重点基础研究发展规划项目(973) (2007CB815204)资助 (973) (2007CB815204)

  • We studied the effects of salts on the microstructure of liquid methanol using the Raman spectra. We compared the excess Raman spectra of different methanolic salt solutions in the O—H and C—O stretching regions. These regions reflect the interactions between anions (cations) and methanol molecules. In the O—H stretching region, the excess spectra show that the anions interact with methanol molecules by weak hydrogen bonding and the strength of the hydrogen bonds decrease according to the order: CH3OH-CH3OH>Cl--CH3OH>NO- 3 -CH3OH>ClO- 3 -CH3OH. Additionally, no interactions between cations and methanol molecules are apparent, as determined after analysis of this region. In the C—O stretching region, the excess Raman spectra show the interactions between anions (cations) and methanol molecules. The C—O stretching vibration frequencies of methanol that interact with the anions and cations increase according to the order: CH3—OH (anions)3—OH (bulk)3—OH (cations). According to the excess Raman spectra in the C—O stretching region, we fitted the Raman spectra and used the fitting results to determine the solvation numbers in the first solvation shell of the ions. The Raman spectra show that the ions do not affect the microstructure of liquid methanol beyond the first solvation shell at this concentration (~0.005).

  • 加载中
    1. [1]

      1. Smedley, S. I. Interpretation of ionic conductivity in liquids. New York: Plenum, 1980

    2. [2]

      2. Marcus, Y. Ion solvation. Chichester, U. K.: Wiley, 1986

    3. [3]

      3. Yamauchi, S.; Kanno, H. Chem. Phys. Lett., 1989, 154(3): 248

    4. [4]

      4. Yamauchi, S.; Kanno, H. J. Phys. Chem., 1990, 94(17): 6594

    5. [5]

      5. Kanno, H.; Yamauchi, S. J. Raman Spectrosc., 1993, 24(7): 403

    6. [6]

      6. Honshoh, M.; Kanno, H.; Ueda, T. J. Raman Spectrosc., 1995, 26 (4): 289

    7. [7]

      7. Kanno, H.; Honsho, M.; Yamauchi, S. Z. Naturforsch., 1995, 50a: 257

    8. [8]

      8. Hidaka, F.; Yoshimura, Y.; Kanno, H. J. Solution Chem., 2003, 32 (3): 239

    9. [9]

      9. Abe, N.; Ito, M. J. Raman Spectrosc., 1978, 7(3): 161

    10. [10]

      10. Symons, M. C. R. J. Chem. Soc. Faraday Trans., 1983, 79: 1273

    11. [11]

      11. Mochizuki, S.; Wakisaka, A. J. Phys. Chem. A, 2002, 106(20): 5095

    12. [12]

      12. Jorgensen, W. L.; Bi t, B.; Chandrasekhar, J. J. Am. Chem. Soc., 1982, 104(17): 4584

    13. [13]

      13. Impey, R. W.; Sprik, M.; Klein, M. L. J. Am. Chem. Soc., 1987, 109(20): 5900

    14. [14]

      14. Pagliai, M.; Cardini, G.; Schettino, V. J. Phys. Chem. B, 2005, 109 (15): 7475

    15. [15]

      15. Torii, H. J. Phys. Chem. A, 1999, 103(15): 2843

    16. [16]

      16. Lin, K.; Zhou, X. G.; Luo, Y.; Liu, S. L. J. Phys. Chem. B, 2010, 114(10): 3567

    17. [17]

      17. Dixit, S.; Poon, W. C. K.; Crain, J. J. Phys.-Condes. Matter, 2000, 12(21): L323

    18. [18]

      18. Musso, M.; Torii, H.; Ottaviani, P.; Asenbaum, A.; Giorgini, M. G. J. Phys. Chem. A, 2002, 106(43): 10152

    19. [19]

      19. Max, J. J.; Chapados, C. J. Chem. Phys., 2009, 130(12): 124513

    20. [20]

      20. Miller, A. G.; MacKlin, J. W. J. Phys. Chem., 1985, 89(7): 1193

    21. [21]

      21. Marcus, Y.; Hefter, G. Chem. Rev., 2006, 106(11): 4585

    22. [22]

      22. Li, Q. Z.; Wu, G. S.; Yu, Z. W. J. Am. Chem. Soc., 2006, 128(5): 1438

    23. [23]

      23. Li, Q. Z.; Wang, N. N.; Zhou, Q.; Sun, S. Q.; Yu, Z. W. Appl. Spectrosc., 2008, 62(2): 166

    24. [24]

      24. Wang, N. N.; Jia, Q.; Li, Q. Z.; Yu, Z. W. J. Mol. Struct., 2008, 883-884: 55

    25. [25]

      25. Zhang, Q. G.; Wang, N. N.; Yu, Z. W. J. Phys. Chem. B, 2010, 114(14): 4747

    26. [26]

      26. Yu, Y. Q.; Lin, K.; Zhou, X. G.; Wang, H.; Liu, S. L.; Ma, X. X. J. Raman Spectrosc., 2007, 38(9): 1206

    27. [27]

      27. Yu, Y. Q.; Lin, K.; Zhou, X. G.; Wang, H.; Liu, S. L.; Ma, X. X. J. Phys. Chem. C, 2007, 111(25): 8971

    28. [28]

      28. Barthel, J.; Neueder, R.; Poepke, H.; Wittmann, H. J. Solution Chem., 1998, 27(12): 1055

    29. [29]

      29. Wahab, A.; Mahiuddin, S. Can. J. Chem., 2002, 80(2): 175

    30. [30]

      30. Ihmels, E. C.; Safarov, J. T. J. Chem. Thermodyn., 2006, 38(11): 1443

    31. [31]

      31. Wawer, J.; Krakowiak, J.; Grzybkowski, W. J. Chem. Thermodyn., 2008, 40(8): 1193

    32. [32]

      32. Wahab, A.; Mahiuddin, S. J. Chem. Eng. Data, 2009, 54(2): 436

    33. [33]

      33. Stygar, J.; Zukowska, G.; Wieczorek, W. Solid State Ionics, 2005, 176(35-36): 2645

    34. [34]

      34. Wang, Z. X.; Huang, B. Y.; Wang, S. M.; Xue, R. J.; Huang, X. J.; Chen, L. Q. Electrochim. Acta, 1997, 42(17): 2611

    35. [35]

      35. Markarian, S. A.; Gabrielian, L. S.; Zatikyan, A. L.; Bonora, S.; Trinchero, A. Vib. Spectro., 2005, 39(2): 220

    36. [36]

      36. Ozutsumi, K.; Ohtaki, H. Pure Appl. Chem., 2004, 76(1): 91

    37. [37]

      37. Yamagami, M.; Wakita, H.; Yamaguchi, T. J. Chem. Phys., 1995, 103(18): 8174

    38. [38]

      38. Megyes, T.; Grosz, T.; Radnai, T.; Bako, I.; Palinkas, G. J. Phys. Chem. A, 2004, 108(35): 7261

    39. [39]

      39. Soper, A. K.; Weckstr觟m, K. Biophys. Chem., 2006, 124(3): 180

    40. [40]

      40. Smith, J. D.; Saykally, R. J.; Geissler, P. L. J. Am. Chem. Soc., 2007, 129(45): 13847

    41. [41]

      41. Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. J. Chem. Phys., 2003, 119(23): 12457


  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    18. [18]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1083)
  • Abstract views(3124)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return