Citation: KE Yan-Rong, JIN Hong-Wei, LIU Zhen-Ming, ZHANG Liang-Ren. Homology Modeling and Structure Validation of the Adenosine A1 Receptor[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2833-2839. doi: 10.3866/PKU.WHXB20100916 shu

Homology Modeling and Structure Validation of the Adenosine A1 Receptor

  • Received Date: 19 May 2010
    Available Online: 27 September 2010

  • A three dimensional structure model of the adenosine A1 receptor was built using homology modeling. The anta nist DPCPX was docked into the model protein to form a receptor-ligand complex. A molecular dynamics simulation over 5 ns was performed for this complex. We selected 12 protein structures, including the average structure obtained from the last 2 ns of the simulation and 11 frames extracted after equilibration for the study. A database comprising 52 active anta nists and 1000 decoys was then docked into the 12 protein models using DOCK, VINA, and LD software packages and these molecules were ranked by their docking scores. The best model protein with the highest enrichment factor (EF) and the largest area under the ROC (AU-ROC) was chosen for further study. The results from the enrichment factor at 10%of the ranked database (EF10) and AU-ROC calculations indicate that LD is the best virtual screening software for the adenosine A1 receptor. LD docking results suggest that optimized adenosine A1 receptor protein structures, Favg and F5, can be used for virtual screening and for novel design to discover more potent anta nists.

  • 加载中
    1. [1]

      1. Ralevic, V.; Burnstock, G. Pharmacol. Rev., 1998, 50: 413

    2. [2]

      2. Müller, C. E.; Stein, B. Curr. Pharm. Design, 1996, 2: 501

    3. [3]

      3. Poulsen, S. A.; Quinn, R. J. Bioorg. Med. Chem., 1998, 6: 619

    4. [4]

      4. Müller, C. E. Expert. Opin. Ther. Pat., 1997, 7: 419

    5. [5]

      5. Hess, S. Expert. Opin. Ther. Pat., 2001, 11: 1533

    6. [6]

      6. Maemoto, T. J. Pharmacol. Sci., 2004, 96: 42

    7. [7]

      7. Wilcox, C. S.;Welch, W. J.; Schreiner, G. F.; Belardinelli, L. J. Am. Soc. Nephrol., 1999, 10: 714

    8. [8]

      8. ttlieb, S. S. Circulation, 2002, 105: 1348

    9. [9]

      9. Giordanetto, F.; Fossa, P.; Menozzi, G.; Schenone, S.; Bondavalli, F.; Ranise, A.; Mosti, L. J. Comput. Aided Mol. Des., 2003, 17: 39

    10. [10]

      10. Gutiérrez-de-terán, H.; Centeno, N. B.; Pastor, M.; Sanz, F. Proteins, 2004, 54: 705

    11. [11]

      11. Tuccinardi, T.; Ortore, G.; Manera, C.; Saccomanni, G.; Martinelli, M. Euro. J. Med. Chem., 2006, 41: 321

    12. [12]

      12. Cherezov, V. Science, 2007, 318: 1258

    13. [13]

      13. Yuzlenko, O.; Kiec-Kononowicz, K. J. Comput. Chem., 2009, 30: 14

    14. [14]

      14. Jaakola, V. P. Science, 2008, 322: 1211

    15. [15]

      15. http://www.gpcr.org

    16. [16]

      16. http://expasy.org/sprot/

    17. [17]

      17. SYBYL software. Version 6.9. St. Louis: Tripos. Associates. Inc.

    18. [18]

      18. Discovery Studio software. Version 2.1. San Die : Accelrys. Inc.

    19. [19]

      19. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol., 1997, 267: 727

    20. [20]

      20. Barbhaiya, H.; McClain, R.; Ijzerman, A.; Rivkees, S. Mol. Pharmacol., 1996, 50: 1635

    21. [21]

      21. Olah, M. E.; Ren, H.; Ostrowski, J.; Jacobson, K. A.; Stiles, G. L. J. Biol. Chem., 1992, 267: 10764

    22. [22]

      22. Martinelli, A.; Tuccinardi, T. Mol. Res. Rev., 2008, 28: 247

    23. [23]

      23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.03.Wallingford, CT: Gaussian Inc., 2003

    24. [24]

      24. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem., 1993, 97: 10269

    25. [25]

      25. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comp. Phys. Commun., 1995, 91: 43

    26. [26]

      26. Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Model., 2001, 7: 306

    27. [27]

      27. van der Spoel, D.; Buuren, A. R. V.; Tieleman, D. P.; Berendsen, H. J. J. Biomol. NMR, 1996, 8: 229

    28. [28]

      28. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys., 1984, 81: 3684

    29. [29]

      29. Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem., 1997, 18: 463

    30. [30]

      30. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys., 1993, 98: 10089

    31. [31]

      31. Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. J. Mol. Biol., 1982, 161: 269

    32. [32]

      32. Ewing, T. J. A.; Kuntz, I. D. J. Comput. Chem., 1997, 18: 1175

    33. [33]

      33. Trott, O.; Arthur, J. O. J. Comput. Chem., 2010, 31: 455

    34. [34]

      34. Moro, S.; Gao, Z. G.; Jacobson, K. A.; Spalluto, G. Med. Res. Rev., 2006, 26: 131

    35. [35]

      35. Wei, B. Q.; Baase, W. A.;Weaver, L. H.; Mattews, B. W.; Shoichet, B. K. J. Mol. Biol., 2002, 322: 339

    36. [36]

      36. Hevener, K. E.; Zhao, W.; Ball, D. M.; Babaoglu, K.; Qi, J. J.; White, S. W.; Lee, R. E. J. Chem. Inf. Model., 2009, 49: 444

    37. [37]

      37. Truchon, J. F.; Bayly, C. I. J. Chem. Inf. Model., 2007, 47: 488


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    15. [15]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    18. [18]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    19. [19]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(1321)
  • Abstract views(3299)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return