Citation: CI Cheng-Gang, DUAN Xue-Mei, LIU Jing-Yao, SUN Chia-Chung. Photodissociation Mechanism of Cyanogen Azide[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2787-2792. doi: 10.3866/PKU.WHXB20100914 shu

Photodissociation Mechanism of Cyanogen Azide

  • Received Date: 4 May 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(20333050, 20303007, 20973077) 和教育部新世纪优秀人才支持计划(NCET) 资助项目 (20333050, 20303007, 20973077) 和教育部新世纪优秀人才支持计划(NCET)

  • We investigated the photodissociation mechanism of cyanogen azide (N3CN) at the MRCI+Q//CAS(10,9)/6-311+G(2df) level of theory using the multi-reference state method. The optimized structures and energies of the minima, transition states, singlet/singlet conical intersection and singlet/triplet crossing points of the ground and low-lying excited states were obtained to explore the potential energy surfaces of N3CN. The vertical excited energies calculated at the MRCI+Q//CAS(10, 9) level were compared with the experimental data. It is shown that N—N bond fission to form N2+NCN is the predominant dissociation pathway on the S0, S1, S2, and T1 surfaces whereas the C—N bond fission channel is the minor pathway. The 220 nm absorption peak observed experimentally corresponds to an excitation from the S0 to the S1 state leading to the major photodissociation product NCN[a1Δg]. The 275 nm absorption peak corresponds to the S0-T1 transition leading to the formed ground-state product NCN[X3Σ-g ] via the barrierlessly direct dissociation in the T1 state. Our theoretical results agree well with experimental observations.

  • 加载中
    1. [1]

      1. Xiao, H. M.; Li, Y. F.; Qian, J. J. Acta Phys. -Chim. Sin., 1994, 10 (3): 235 [肖鹤鸣, 李永富,钱建军.物理化学学报, 1994, 10(3): 235]

    2. [2]

      2. Xu, W. Y.; Liu, G. S.; Peng, Y. Y.; Hong, S. G. Acta Phys. -Chim. Sin., 1998, 14(7): 669 [徐文渊,刘够生,彭以元, 洪三国.物理 化学学报, 1998, 14(7): 669]

    3. [3]

      3. Li, J. S.; Xiao, H. M. Acta Phys. -Chim. Sin., 2000, 16(1): 36 [李金山,肖鹤鸣.物理化学学报, 2000, 16(1): 36]

    4. [4]

      4. Javad, H.; Naader, A.; Soraia, M.; Mehdi, A. Acta Phys. -Chim. Sin., 2009, 25(6): 1239 [Javad, H.; Naader, A.; Soraia, M.; Mehdi, A.物理化学学报, 2009, 25(6): 1239]

    5. [5]

      5. Marsh, F. D. J. Org. Chem., 1972, 37: 2966

    6. [6]

      6. Kroto, H. W. J. Chem. Phys., 1965, 44: 831

    7. [7]

      7. Okabe, H.; Mele, A. J. Chem. Phys., 1969, 51: 2100

    8. [8]

      8. Milligen, D. E.; Jacox, M. E.; Bass, A. M. J. Chem. Phys., 1965, 43: 3149

    9. [9]

      9. Milligen, D. E.; Jacox, M. E. J. Chem. Phys., 1965, 45: 1387

    10. [10]

      10. Schoen, L. J. J. Chem. Phys., 1965, 45: 2773

    11. [11]

      11. Jennings, K. R.; Linnett, J. W. Faraday Soc., 1960, 56: 1737

    12. [12]

      12. Benard, D. J.; Linnen, C.; Harker, A.; Michels, H. H.; Addision, J. B.; Ondercin, R. J. Phys. Chem. B, 1998, 102: 6010

    13. [13]

      13. Marsh, F. D.; Hermes, M. E. J. Am. Chem. Soc., 1964, 86: 4506

    14. [14]

      14. Jensen, J. O. J. Mol. Struct. -Theochem, 2005, 730: 235

    15. [15]

      15. Türker, L.; Atalar, T. J. Hazard. Mater., 2008, 153: 966

    16. [16]

      16. Costain, C. C.; Kroto, H. W. Can. J. Phys., 1972, 50: 1453

    17. [17]

      17. Almenningen, A.; Bak, B.; Jansen, P.; Strand, T. G. Acta Chim. Scand., 1973, 27: 1531

    18. [18]

      18. Werner, H. J.; Knowles, P. J. J. Chem. Phys., 1985, 82: 5053

    19. [19]

      19. Knowles, P. J.;Werner, H. J. Chem. Phys. Lett., 1985, 115: 259

    20. [20]

      20. Eckert, F.; Werner, H. J. Theor. Chem. Acc., 1998, 100: 21

    21. [21]

      21. Werner, H. J. ; Knowles, P. J. Chem. Phys., 1988, 89: 5803

    22. [22]

      22. Knowles, P. J.;Werner, H. J. Chem. Phys. Lett., 1988, 145: 514

    23. [23]

      23. Werner, H. J.; Knowles, P. J.; Lindh, R.; et al. MOLPRO, a package of ab initio programs. version 2006.1

    24. [24]

      24. Butler, G. B.; Berlin, K. D. Foundation of organic chemistry (theory and application). Trans. Zhang, L. P.; Tu, Y. R. Beijing: People Education Press, 1980: 501 [Butler, G. B.; Berlin, K. D. 有机化学基础(理论和应用). 张丽蘋, 涂余如,译. 北京: 人民教 育出版社, 1980: 501]

    25. [25]

      25. NIST Chemisty Webbook [DB]. LinstromP. J.; Mallard W. G. Eds. Available from: http://webbook.NIST. v/chemistry


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    18. [18]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(1166)
  • Abstract views(3482)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return