Citation:
WANG Wen-Qing, SHEN Xin-Chun, NG Yan. Cryogenic Magnetic Transition of D- and L-Alanine: Magnetic Field Dependence of Specific Heat and DC Magnetic Susceptibility[J]. Acta Physico-Chimica Sinica,
;2010, 26(10): 2597-2603.
doi:
10.3866/PKU.WHXB20100912
-
To understand the intrinsic asymmetries of D- and L-alanine crystal lattices, the magnetic field dependence of zero-field and 1, 3, and 5 T on the heat capacity were measured from 2 to 20 K. The obtained heat capacity data shows linear behavior that follows: C(T)=aT3+b/T2. The first aT3 term is from the lattice phonon contribution with CV=(12/5)π4R(T/θD)3 (θD is the Debye temperature). The second b/T 2 term in the fitting formula is the magnetic contribution. In this experiment, the obtained Cp data for the D- and L-alanine single crystals show a Boson peak, which is seen as a maximum in the Cp /T 3 versus T plots in the low temperature region from 2-20 K at different fields. The four Cp /T 3 versus T curves show a split between D-andL-alanine from 2-12 K and this is due to the magnetic contribution. This is absent between 12 and 20 K, which indicates the Schottky anomaly. The temperature of the Boson peak is 9.44 K for D-alanine and 10.86 K for L-alanine, and θD is 151.5 and 152.7 K for D-alanine and L-alanine in zero-field, respectively. DC magnetic susceptibility data show the chiral behavior in nuclear spin-electron spin hyperfine interaction at very low temperature.
-
-
-
[1]
1. Fisher, G. H. Amino Acids, 2007, 32: 1
-
[2]
2. Morikawa, A.; Hamase, K.; Inoue, T.; Konno, R.; Zaitsu, K. Amino Acids, 2007, 32: 13
-
[3]
3. Murli, C.; Thomas, S.; Venkateswaran, S.; Sharma, S. M. Physica B, 2005, 364: 233
-
[4]
4. Fuller, W. J. Phys. Chem., 1959, 63: 1705
-
[5]
5. Wang, W. Q.; Shen, X. C.; ng, Y. Acta Phys.-Chim. Sin., 2008, 24: 743 [王文清,沈新春, 龚.物理化学学报, 2008, 24: 743]
-
[6]
6. Simpson, H. J.; Marsh, R. E. Acta Cryst., 1966, 20: 550
-
[7]
7. Destro, R.; Marsh, R. E. J. Phys. Chem., 1988, 92: 966
-
[8]
8. Crowell, R. A.; Chronister, E. L. J. Phys. Rev. B, 1993, 48: 172
-
[9]
9. Wang, W. Q.; Min, W.; Bai, F.; Sun, L.; Yi, F.; Wang, Z. M.; Yan, C. H.; Ni, Y. M.; Zhao, Z. X. Tetrahedron-Asymmetry, 2002, 13: 2427
-
[10]
10. (a) Wang, W. Q.; Liu, Y. N.; ng, Y. Acta Phys.-Chim. Sin., 2004, 20: 1345 [王文清,刘轶男, 龚.物理化学学报, 2004, 20: 1345] (b) Wang, W. Q.; ng, Y.; Yao, N. Acta Phys.-Chim. Sin., 2005, 21: 774 [王文清,龚,姚楠.物理化学学报, 2005, 21: 774]
-
[11]
11. Wilson, C. C.; Myles, D.; Ghosh, M.; Johnson, L. N.; Wang,W. Q. New J. Chem., 2005, 29: 1318
-
[12]
12. Cronin, J. R.; Pizzarello, S. Science, 1997, 275: 951
-
[13]
13. Gledhill, M. Analyst, 2001, 126: 1359
-
[14]
14. Rakvin, B.; Maltar-Strmecki, N.; Ramsey, C. M.; Dalal, N. S. J. Chem. Phys., 2004, 120: 6665
-
[15]
15. Jasiukiewicz, C.; Karpus, V. Solid State Commun., 2003, 128: 167
-
[16]
16. Pantea, C.; Stroe, I.; Ledbetter, H.; Betts, J. B.; Zhao, Y.; Daemen, L. L.; Cynn, H.; Migliori, A. J. Phys. Chem. Solids, 2008, 69: 211
-
[17]
17. Drebushchak, V. A.; Kovalevskaya, Y. A.; Paukov, I. E.; Boldyreva, E. V. J. Therm. Anal. Calorim., 2006, 85: 485
-
[18]
18. Bodryakov, V. Y.; Povzner, A. A.; Zelyukova, O. G. Physics of the Solid State, 1999, 41: 1138
-
[19]
19. Carlin, R. L. Magnetochemistry. Berlin, Heidelberg, Germany: Springer-Verlag, 1986: 41-42
-
[20]
20. Dhar, S. K.; Gschneidner, K. A.; Bredl Jr., C. D.; Steglich, F. Phys. Rev. B, 1989, 39: 2439
-
[21]
21. O'connor, C. J.; Bhatia, S. N.; Carlin, R. L. Physica B, 1978, 95: 23
-
[22]
22. Zheng, P.; Luo, J. L.; Wu, D.; Su, S. K.; Liu, G. T.; Ma, Y. C.; Chen, Z. J. Chin. Phys. Lett., 2008, 25: 3406
-
[23]
23. Compton, R. N.; Pagni, R. M. Advances in Atomic, Molecular and Optical Physics., 2002, 48: 219
-
[24]
24. Barron, L. D. Space Sci Rev., 2008, 135: 187
-
[25]
25. Freedman, T. B. ; Balukjian, G. A.; Nafie, L. A. J. Am. Chem. Soc., 1985, 107: 6213
-
[26]
26. Barron, L. D. Chem. Soc. Rev., 1986, 15: 189
-
[27]
27. Li, R. C. J.; Berman, N. S. J. Phys. Chem., 1970, 74: 1643
-
[28]
28. Saraswati, V.; Vijayaraghavan, R. J. Phys. Soc. Jap., 1967, 23: 590
-
[29]
29. Reitboeck, H. Biophysik, 1967, 4: 15
-
[30]
30. Gu, Z. T.; Ebisawa, K.; McDermott, A. Solid State Nucl. Magn. Reson., 1996, 7: 161
-
[1]
-
-
-
[1]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[2]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[3]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[4]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[5]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[6]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[7]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
-
[8]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[9]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[10]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[11]
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
-
[12]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[13]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[14]
Ting Pan , Dinghu Zhang , Guomei You , Xiaoxia Wu , Chenguang Zhang , Xinyu Miao , Wenzhi Ren , Yiwei He , Lulu He , Yuanchuan Gong , Jie Lin , Aiguo Wu , Guoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857
-
[15]
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
-
[16]
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
-
[17]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[18]
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
-
[19]
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
-
[20]
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
-
[1]
Metrics
- PDF Downloads(1429)
- Abstract views(2589)
- HTML views(10)