Citation: WANG Wen-Qing, SHEN Xin-Chun, NG Yan. Cryogenic Magnetic Transition of D- and L-Alanine: Magnetic Field Dependence of Specific Heat and DC Magnetic Susceptibility[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2597-2603. doi: 10.3866/PKU.WHXB20100912 shu

Cryogenic Magnetic Transition of D- and L-Alanine: Magnetic Field Dependence of Specific Heat and DC Magnetic Susceptibility

  • Received Date: 19 March 2010
    Available Online: 27 September 2010

    Fund Project: 国家重点基础研究发展规划项目(973) (2004-973-36) (973) (2004-973-36)国家自然科学基金(20452002)资助 (20452002)

  • To understand the intrinsic asymmetries of D- and L-alanine crystal lattices, the magnetic field dependence of zero-field and 1, 3, and 5 T on the heat capacity were measured from 2 to 20 K. The obtained heat capacity data shows linear behavior that follows: C(T)=aT3+b/T2. The first aT3 term is from the lattice phonon contribution with CV=(12/5)π4R(T/θD)3 (θD is the Debye temperature). The second b/T 2 term in the fitting formula is the magnetic contribution. In this experiment, the obtained Cp data for the D- and L-alanine single crystals show a Boson peak, which is seen as a maximum in the Cp /T 3 versus T plots in the low temperature region from 2-20 K at different fields. The four Cp /T 3 versus T curves show a split between D-andL-alanine from 2-12 K and this is due to the magnetic contribution. This is absent between 12 and 20 K, which indicates the Schottky anomaly. The temperature of the Boson peak is 9.44 K for D-alanine and 10.86 K for L-alanine, and θD is 151.5 and 152.7 K for D-alanine and L-alanine in zero-field, respectively. DC magnetic susceptibility data show the chiral behavior in nuclear spin-electron spin hyperfine interaction at very low temperature.

     

  • 加载中
    1. [1]

      1. Fisher, G. H. Amino Acids, 2007, 32: 1

    2. [2]

      2. Morikawa, A.; Hamase, K.; Inoue, T.; Konno, R.; Zaitsu, K. Amino Acids, 2007, 32: 13

    3. [3]

      3. Murli, C.; Thomas, S.; Venkateswaran, S.; Sharma, S. M. Physica B, 2005, 364: 233

    4. [4]

      4. Fuller, W. J. Phys. Chem., 1959, 63: 1705

    5. [5]

      5. Wang, W. Q.; Shen, X. C.; ng, Y. Acta Phys.-Chim. Sin., 2008, 24: 743 [王文清,沈新春, 龚.物理化学学报, 2008, 24: 743]

    6. [6]

      6. Simpson, H. J.; Marsh, R. E. Acta Cryst., 1966, 20: 550

    7. [7]

      7. Destro, R.; Marsh, R. E. J. Phys. Chem., 1988, 92: 966

    8. [8]

      8. Crowell, R. A.; Chronister, E. L. J. Phys. Rev. B, 1993, 48: 172

    9. [9]

      9. Wang, W. Q.; Min, W.; Bai, F.; Sun, L.; Yi, F.; Wang, Z. M.; Yan, C. H.; Ni, Y. M.; Zhao, Z. X. Tetrahedron-Asymmetry, 2002, 13: 2427

    10. [10]

      10. (a) Wang, W. Q.; Liu, Y. N.; ng, Y. Acta Phys.-Chim. Sin., 2004, 20: 1345 [王文清,刘轶男, 龚.物理化学学报, 2004, 20: 1345] (b) Wang, W. Q.; ng, Y.; Yao, N. Acta Phys.-Chim. Sin., 2005, 21: 774 [王文清,龚,姚楠.物理化学学报, 2005, 21: 774]

    11. [11]

      11. Wilson, C. C.; Myles, D.; Ghosh, M.; Johnson, L. N.; Wang,W. Q. New J. Chem., 2005, 29: 1318

    12. [12]

      12. Cronin, J. R.; Pizzarello, S. Science, 1997, 275: 951

    13. [13]

      13. Gledhill, M. Analyst, 2001, 126: 1359

    14. [14]

      14. Rakvin, B.; Maltar-Strmecki, N.; Ramsey, C. M.; Dalal, N. S. J. Chem. Phys., 2004, 120: 6665

    15. [15]

      15. Jasiukiewicz, C.; Karpus, V. Solid State Commun., 2003, 128: 167

    16. [16]

      16. Pantea, C.; Stroe, I.; Ledbetter, H.; Betts, J. B.; Zhao, Y.; Daemen, L. L.; Cynn, H.; Migliori, A. J. Phys. Chem. Solids, 2008, 69: 211

    17. [17]

      17. Drebushchak, V. A.; Kovalevskaya, Y. A.; Paukov, I. E.; Boldyreva, E. V. J. Therm. Anal. Calorim., 2006, 85: 485

    18. [18]

      18. Bodryakov, V. Y.; Povzner, A. A.; Zelyukova, O. G. Physics of the Solid State, 1999, 41: 1138

    19. [19]

      19. Carlin, R. L. Magnetochemistry. Berlin, Heidelberg, Germany: Springer-Verlag, 1986: 41-42

    20. [20]

      20. Dhar, S. K.; Gschneidner, K. A.; Bredl Jr., C. D.; Steglich, F. Phys. Rev. B, 1989, 39: 2439

    21. [21]

      21. O'connor, C. J.; Bhatia, S. N.; Carlin, R. L. Physica B, 1978, 95: 23

    22. [22]

      22. Zheng, P.; Luo, J. L.; Wu, D.; Su, S. K.; Liu, G. T.; Ma, Y. C.; Chen, Z. J. Chin. Phys. Lett., 2008, 25: 3406

    23. [23]

      23. Compton, R. N.; Pagni, R. M. Advances in Atomic, Molecular and Optical Physics., 2002, 48: 219

    24. [24]

      24. Barron, L. D. Space Sci Rev., 2008, 135: 187

    25. [25]

      25. Freedman, T. B. ; Balukjian, G. A.; Nafie, L. A. J. Am. Chem. Soc., 1985, 107: 6213

    26. [26]

      26. Barron, L. D. Chem. Soc. Rev., 1986, 15: 189

    27. [27]

      27. Li, R. C. J.; Berman, N. S. J. Phys. Chem., 1970, 74: 1643

    28. [28]

      28. Saraswati, V.; Vijayaraghavan, R. J. Phys. Soc. Jap., 1967, 23: 590

    29. [29]

      29. Reitboeck, H. Biophysik, 1967, 4: 15

    30. [30]

      30. Gu, Z. T.; Ebisawa, K.; McDermott, A. Solid State Nucl. Magn. Reson., 1996, 7: 161


  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    4. [4]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    5. [5]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    6. [6]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    9. [9]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    10. [10]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    11. [11]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    12. [12]

      . Cover and Table of Contents for Vol.40 No. 12. Acta Physico-Chimica Sinica, 2024, 40(12): -.

    13. [13]

      . . University Chemistry, 2024, 39(2): 0-0.

    14. [14]

      . . University Chemistry, 2024, 39(3): 0-0.

    15. [15]

      . . University Chemistry, 2024, 39(4): 0-0.

    16. [16]

      . . University Chemistry, 2024, 39(5): 0-0.

    17. [17]

      . . University Chemistry, 2024, 39(6): 0-0.

    18. [18]

      . . University Chemistry, 2024, 39(7): 0-0.

    19. [19]

      . . University Chemistry, 2024, 39(8): 0-0.

    20. [20]

      . . University Chemistry, 2024, 39(9): 0-0.

Metrics
  • PDF Downloads(1429)
  • Abstract views(2516)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return