Citation: LIU Yu-Liang, YOU Cui-Rong, LI Yang, HE Tao, ZHANG Xiang-Qin, SUO Zhang-Huai. Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2455-2460. doi: 10.3866/PKU.WHXB20100909
-
Many microorganisms can adsorb metal ions strongly and even reduce them to their metal states. We studied the adsorption of ld nanoparticles on Escherichia coil (DH5α) to form Au@DH5α. Titanium tetrabutoxide was added to Au@DH5αto prepare Au@DH5α-Ti(OH)4 by hydrolysis. The DH5αtemplate was removed by calcination in air to obtain the Au@TiO2 catalyst. These materials were characterized by N2 adsorption, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), thermogravimetry-differential thermal analysis (TG-DTA), and transmission electron microscopy (TEM). The results show that the ld catalyst maintains a rod-like structure similar to DH5αand the porous structure of the titanium oxide prepared using DH5αas a biological template can prevent the aggregation of ld nanoparticles to some extent. With higher amounts of DH5αdosage, smaller ld nanoparticles were obtained and the surface plasmon absorption of ld nanoparticles shifted toward shorter wavelengths. The obtained ld catalyst has a larger surface area than the catalyst prepared by the impregnation method. However, this increases the coke content of the catalyst. Catalytic activity was evaluated by the CO oxidation reaction. We found that with a DH5αdosage of 100 or 150 mL, the obtained ld catalyst can convert CO to CO2 completely at 80 ℃.
-
Keywords:
-
Titaniumoxide
, - Escherichia coil,
- Template agent,
- ld catalyst,
- CO oxidation
-
-
-
[1]
1. Hutchings, G. J. J. Catal., 1985, 96(1): 292
-
[2]
2. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.,1987, 16: 405
-
[3]
3. Bond, G. C.; Thompson, D. T. ld Bull., 2000, 33(2): 41
-
[4]
4. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Top. Catal., 2007,44(1-2): 331
-
[5]
5. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Appl. Catal. A,2005, 291(1-2): 253
-
[6]
6. Baron, R.; Willner, B.; Willner, I. Chem. Commun., 2007, (4): 323
-
[7]
7. Horovitz, O.; Tomoaia, G.; Mocanu, A.; Yupsanis, T.; Tomoaia-Cotisel, M. ld Bull., 2007, 40(3): 213
-
[8]
8. Yang, F.; Guo, Z. J.; Bai, Y.; Huang, Z.; Zheng,W. J.Photographic Sci. Photochem., 2006, 24(2): 118 [杨芳,郭振江,白燕,黄峙,郑文杰.感光科学与光化学, 2006, 24(2):118]
-
[9]
9. Jin, M. S.; Yuan, H. Q.; Jing, J. R.; Suo, Z. H.; Sun, L. Chem. J.Chin. Univ., 2009, 30(6): 1183 [金明善,原慧卿,荆济荣, 索掌怀, 孙力.高等学校化学学报, 2009, 30(6): 1183]
-
[10]
10. Huang, H. Z.; Yuan, Q.; Yang, X. R. J. Colloid Interface Sci.,2005, 282(1): 26
-
[11]
11. Liu, K. Z.; Shi, L. L.; Jin, M. S.; Suo, Z. H. J. Mol. Catal. (China),2009, 23(5): 436 [刘克增, 石玲玲,金明善,索掌怀.分子催化,2009, 23(5): 436]
-
[12]
12. Gericke, M.; Pinches, A. ld Bull., 2006, 39(1): 22
-
[13]
13. Chen, X. C.; Hu, S. P.; Shen, C. F.; Dou, C. M.; Shi, J. Y.; Chen, Y.X. Bioresour. Technol., 2009, 100(1): 330
-
[14]
14. Agnihotri, M.; Joshi, S.; Kumar, A. R.; Zinjarde, S.; Kulkarni, S.Mater. Lett., 2009, 63(15): 1231
-
[15]
15. Sugunan, A.; Melin, P.; Schnurer, J.; Hilborn, J. G.; Joydeep, D.Adv. Mater., 2007, 19(1): 77
-
[16]
16. Liu, Y. Y.; Fu, J. K.; Hu, R. Z.; Yao, B. X.; Weng, S. Z. ActaMicrobiol. Sin., 1999, 39(3): 260 [刘月英, 傅锦坤,胡荣宗,姚炳新,翁绳周.微生物学报, 1999, 39(3): 260]
-
[17]
17. Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.;Huang, C. C.; Li, W. M.; Sun, C. K.; Yeh, C. S. Chem. Commun.,2008, (37): 4430
-
[18]
18. Fu, J. K.; Liu, Y. Y.; Hu, R. Z.; Zegn, J. L.; Xu, P. P.; Lin, Z. Y.;Yao, B. X.;Weng, S. Z. Acta Phys. -Chim. Sin., 1998, 14(9): 769[傅锦坤,刘月英, 胡荣宗, 曾金龙,许翩翩,林种玉, 姚炳新,翁绳周. 物理化学学报, 1998, 14(9): 769]
-
[19]
19. Kumara, M. T.; Tripp, B. C.; Muralidharan, S. Chem. Mater.,2007, 19(8): 2056
-
[20]
20. Kumara, M. T.; Muralidharan, S.; Tripp, B. C. J. Nanosci.Nanotechnol., 2007, 7(7): 2260
-
[21]
21. Nomura, T.; Morimoto, Y.; Tokumoto, H.; Konishi, Y. Mater.Lett., 2008, 62(21-22): 3727
-
[22]
22. Nomura, T.; Morimoto, Y.; Ishikawa, M.; Tokumoto, H.; Konishi,Y. Adv. Powder Technol., 2010, 21(1): 8
-
[23]
23. Suo, Z. H.; Weng, Y. G.; Jin, M. S.; L俟, A. H.; Xu, J. G.; An, L. D.Chin. J. Catal., 2005, 26(11): 1022 [索掌怀,翁永根,金明善,吕爱花,徐金光, 安立敦.催化学报, 2005, 26(11): 1022]
-
[24]
24. Zanella, R.; Giorgio, S.; Shin, C. H.; Henry, C. R.; Louis, C.J. Catal., 2004, 222(2): 357
-
[25]
25. Link, S.; El-Sayed, M. A. J. Phys. Chem. B, 1999, 103(21): 4212
-
[26]
26. Moreau, F.; Bond, G. C.; Taylor, A. O. J. Catal., 2005, 231(1):105
-
[27]
27. Delannoy, L.; El Hassan, N.; Musi, A.; Le To, N. N.; Krafft, J. M.;Louis, C. J. Phys. Chem. B, 2006, 110(45): 22471
-
[28]
28. Bore, M. T.; Mokhonoana, M. P.; Ward, T. L.; Coville, N. J.;Datye, A. K. Microporous Mesoporous Mat., 2006, 95(1-3): 118
-
[1]
-
-
[1]
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[4]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[5]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[9]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[10]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[13]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[14]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[15]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[16]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[17]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[18]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[19]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[20]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[1]
Metrics
- PDF Downloads(1161)
- Abstract views(2852)
- HTML views(17)