Citation: LIU Yu-Liang, YOU Cui-Rong, LI Yang, HE Tao, ZHANG Xiang-Qin, SUO Zhang-Huai. Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2455-2460. doi: 10.3866/PKU.WHXB20100909 shu

Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO

  • Received Date: 17 March 2010
    Available Online: 12 July 2010

    Fund Project: 国家自然科学基金(20473070, 20973148)资助项目 (20473070, 20973148)

  • Many microorganisms can adsorb metal ions strongly and even reduce them to their metal states. We studied the adsorption of ld nanoparticles on Escherichia coil (DH5α) to form Au@DH5α. Titanium tetrabutoxide was added to Au@DH5αto prepare Au@DH5α-Ti(OH)4 by hydrolysis. The DH5αtemplate was removed by calcination in air to obtain the Au@TiO2 catalyst. These materials were characterized by N2 adsorption, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), thermogravimetry-differential thermal analysis (TG-DTA), and transmission electron microscopy (TEM). The results show that the ld catalyst maintains a rod-like structure similar to DH5αand the porous structure of the titanium oxide prepared using DH5αas a biological template can prevent the aggregation of ld nanoparticles to some extent. With higher amounts of DH5αdosage, smaller ld nanoparticles were obtained and the surface plasmon absorption of ld nanoparticles shifted toward shorter wavelengths. The obtained ld catalyst has a larger surface area than the catalyst prepared by the impregnation method. However, this increases the coke content of the catalyst. Catalytic activity was evaluated by the CO oxidation reaction. We found that with a DH5αdosage of 100 or 150 mL, the obtained ld catalyst can convert CO to CO2 completely at 80 ℃.

  • 加载中
    1. [1]

      1. Hutchings, G. J. J. Catal., 1985, 96(1): 292

    2. [2]

      2. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.,1987, 16: 405

    3. [3]

      3. Bond, G. C.; Thompson, D. T. ld Bull., 2000, 33(2): 41

    4. [4]

      4. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Top. Catal., 2007,44(1-2): 331

    5. [5]

      5. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Appl. Catal. A,2005, 291(1-2): 253

    6. [6]

      6. Baron, R.; Willner, B.; Willner, I. Chem. Commun., 2007, (4): 323

    7. [7]

      7. Horovitz, O.; Tomoaia, G.; Mocanu, A.; Yupsanis, T.; Tomoaia-Cotisel, M. ld Bull., 2007, 40(3): 213

    8. [8]

      8. Yang, F.; Guo, Z. J.; Bai, Y.; Huang, Z.; Zheng,W. J.Photographic Sci. Photochem., 2006, 24(2): 118 [杨芳,郭振江,白燕,黄峙,郑文杰.感光科学与光化学, 2006, 24(2):118]

    9. [9]

      9. Jin, M. S.; Yuan, H. Q.; Jing, J. R.; Suo, Z. H.; Sun, L. Chem. J.Chin. Univ., 2009, 30(6): 1183 [金明善,原慧卿,荆济荣, 索掌怀, 孙力.高等学校化学学报, 2009, 30(6): 1183]

    10. [10]

      10. Huang, H. Z.; Yuan, Q.; Yang, X. R. J. Colloid Interface Sci.,2005, 282(1): 26

    11. [11]

      11. Liu, K. Z.; Shi, L. L.; Jin, M. S.; Suo, Z. H. J. Mol. Catal. (China),2009, 23(5): 436 [刘克增, 石玲玲,金明善,索掌怀.分子催化,2009, 23(5): 436]

    12. [12]

      12. Gericke, M.; Pinches, A. ld Bull., 2006, 39(1): 22

    13. [13]

      13. Chen, X. C.; Hu, S. P.; Shen, C. F.; Dou, C. M.; Shi, J. Y.; Chen, Y.X. Bioresour. Technol., 2009, 100(1): 330

    14. [14]

      14. Agnihotri, M.; Joshi, S.; Kumar, A. R.; Zinjarde, S.; Kulkarni, S.Mater. Lett., 2009, 63(15): 1231

    15. [15]

      15. Sugunan, A.; Melin, P.; Schnurer, J.; Hilborn, J. G.; Joydeep, D.Adv. Mater., 2007, 19(1): 77

    16. [16]

      16. Liu, Y. Y.; Fu, J. K.; Hu, R. Z.; Yao, B. X.; Weng, S. Z. ActaMicrobiol. Sin., 1999, 39(3): 260 [刘月英, 傅锦坤,胡荣宗,姚炳新,翁绳周.微生物学报, 1999, 39(3): 260]

    17. [17]

      17. Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.;Huang, C. C.; Li, W. M.; Sun, C. K.; Yeh, C. S. Chem. Commun.,2008, (37): 4430

    18. [18]

      18. Fu, J. K.; Liu, Y. Y.; Hu, R. Z.; Zegn, J. L.; Xu, P. P.; Lin, Z. Y.;Yao, B. X.;Weng, S. Z. Acta Phys. -Chim. Sin., 1998, 14(9): 769[傅锦坤,刘月英, 胡荣宗, 曾金龙,许翩翩,林种玉, 姚炳新,翁绳周. 物理化学学报, 1998, 14(9): 769]

    19. [19]

      19. Kumara, M. T.; Tripp, B. C.; Muralidharan, S. Chem. Mater.,2007, 19(8): 2056

    20. [20]

      20. Kumara, M. T.; Muralidharan, S.; Tripp, B. C. J. Nanosci.Nanotechnol., 2007, 7(7): 2260

    21. [21]

      21. Nomura, T.; Morimoto, Y.; Tokumoto, H.; Konishi, Y. Mater.Lett., 2008, 62(21-22): 3727

    22. [22]

      22. Nomura, T.; Morimoto, Y.; Ishikawa, M.; Tokumoto, H.; Konishi,Y. Adv. Powder Technol., 2010, 21(1): 8

    23. [23]

      23. Suo, Z. H.; Weng, Y. G.; Jin, M. S.; L俟, A. H.; Xu, J. G.; An, L. D.Chin. J. Catal., 2005, 26(11): 1022 [索掌怀,翁永根,金明善,吕爱花,徐金光, 安立敦.催化学报, 2005, 26(11): 1022]

    24. [24]

      24. Zanella, R.; Giorgio, S.; Shin, C. H.; Henry, C. R.; Louis, C.J. Catal., 2004, 222(2): 357

    25. [25]

      25. Link, S.; El-Sayed, M. A. J. Phys. Chem. B, 1999, 103(21): 4212

    26. [26]

      26. Moreau, F.; Bond, G. C.; Taylor, A. O. J. Catal., 2005, 231(1):105

    27. [27]

      27. Delannoy, L.; El Hassan, N.; Musi, A.; Le To, N. N.; Krafft, J. M.;Louis, C. J. Phys. Chem. B, 2006, 110(45): 22471

    28. [28]

      28. Bore, M. T.; Mokhonoana, M. P.; Ward, T. L.; Coville, N. J.;Datye, A. K. Microporous Mesoporous Mat., 2006, 95(1-3): 118


  • 加载中
    1. [1]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(1161)
  • Abstract views(2852)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return