Citation: WU Li-Xia, YU Feng, LIU Jing, DAI Jing-Hua, ZHOU Xiao-Guo, LIU Shi-Lin. Ab initioMolecular Dynamics Investigation on the Production Channels for the Reaction of O- with CH3F[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2331-2336. doi: 10.3866/PKU.WHXB20100907 shu

Ab initioMolecular Dynamics Investigation on the Production Channels for the Reaction of O- with CH3F

  • Received Date: 12 April 2010
    Available Online: 9 July 2010

    Fund Project: 国家自然科学基金(20603033, 10979042) (20603033, 10979042)国家重点基础研究发展规划项目(973) (2007CB815204)资助 (973) (2007CB815204)

  • H-atom abstraction and H2O production channels for the reaction of O- with CH3F were reinvestigated using the ab initio molecular dynamics method at the B3LYP/6-31+G(d,p) level of theory and based on the Born-Oppenheimer approximation. The reactive trajectories were initiated at the transition state of H-atom abstraction. Thermal sampling at 300 K was chosen to determine the initial conditions. Additionally, the energies added to the transition vector of the barrier were restricted to 2.1, 36.8, and 62.8 kJ·mol -1, separately, to reveal the impact of different initial collision energies on the reaction pathways. The results of all the trajectory calculations demonstrate that the H-atom abstraction channel is the dominant production channel. Therefore, our calculations are consistent with previous experimental conclusions. Furthermore, the dynamic reaction pathways for H-atom abstraction and the H2O production channels on the exit-channel potential energy surface are described based on our calculations and thus a comprehensive reaction mechanismis revealed at the microscopic level.

  • 加载中
    1. [1]

      1. Bowers, M. T. Gas phase ion chemistry. Vol.1. New York: Academic Press, 1984: 45-82

    2. [2]

      2. Wayne, R. P. Chemistry of atmosphere. Oxford: Clarendon Press, 1991: 225-256

    3. [3]

      3. Fialkov, A. B. Prog. Energy Combust. Sci., 1997, 23: 399

    4. [4]

      4. DePuy, C. H. J. Org. Chem., 2002, 67: 2393

    5. [5]

      5. Lee, J.; Grabowski, J. J. Chem. Rev., 1992, 92: 1611, and references therein

    6. [6]

      6. Futrell, J. H.; Tiernan, T. O. Ion molecule reactions. Vol.2. Franklin, J. L. Ed. London: Butterworths, 1972: 485-551

    7. [7]

      7. Tanaka, K.; Mackay, G. I.; Payzant, J. D.; Bohme, D. K. Can. J. Chem., 1976, 54: 1643

    8. [8]

      8. Dawson, J. H. J.; Jennings, K. R. J. Chem. Soc. Faraday Trans 2, 1976, 72: 700

    9. [9]

      9. Peverall, R.; Kennedy, R. A.; Mayhew, C. A.; Watts, P. Int. J. Mass Spectrom. Ion Processes., 1997, 171: 51

    10. [10]

      10. Yamamoto, M.; Yamashita, K.; Sadakata, M. J. Mol. Struct. - Theochem, 2003, 634: 31

    11. [11]

      11. Yu, F.; Wu, L. X.; Liu, S. L.; Zhou, X. G. J. Mol. Struct. - Theochem, 2010, 947: 1

    12. [12]

      12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Reversion B.05. Pittsburgh, PA: Gaussian Inc., 2003

    13. [13]

      13. Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    14. [14]

      14. Becke, A. D. J. Chem. Phys., 1993, 98: 5648

    15. [15]

      15. MΦller, C.; Plesset, M. S. Phys. Rev., 1934, 46: 618

    16. [16]

      16. Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett., 1990, 166: 281

    17. [17]

      17. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys., 1992, 96: 6796

    18. [18]

      18. Thompson, D. L. Modern methods for multidimensional dynamics computations in chemistry. Singapore: World Scientific, 1998: 143-189

    19. [19]

      19. Schlegel, H. B. J. Comput. Chem., 2003, 24: 1514

    20. [20]

      20. Schlegel, H. B. Bull. Korean Chem. Soc., 2003, 24: 837

    21. [21]

      21. Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B. J. Chem. Phys., 1999, 111: 3800

    22. [22]

      22. Bakken, V.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys., 1999, 111: 8773

    23. [23]

      23. Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Scheafer III, H. F.; Schreiner, P. R. Encyclopedia of computational chemistry. Chichester: Wiley, 1998: 402-407

    24. [24]

      24. Peslherbe, G. H.;Wang, H.; Hase, W. L. Adv. Chem. Phys., 1999, 105: 171

    25. [25]

      25. Mulliken, R. S. J. Chem. Phys., 1955, 23: 1833

    26. [26]

      26. Yu, F.; Zhao, Y. G.;Wang, Y.; Zhou, X. G.; Liu, S. L. Acta Chim. Sin., 2007, 65: 899 [于锋,赵英国,王勇,周晓国,刘世林. 化学学报, 2007, 65: 899]

    27. [27]

      27. Wang, X. L.; Yu, F.; Xie, D.; Liu, S. L.; Zhou, X. G. Acta Chim. Sin., 2008, 66: 2499 [王新磊,于锋, 谢丹,刘世林,周晓国. 化学学报, 2008, 66: 2499]

    28. [28]

      28. Wang, J. X.; Yu, F.; Liu, J.; Liu, S. L.; Zhou, X. G. Acta Phys. - Chim. Sin., 2008, 24: 1393 [王俊霞,于锋,刘静, 刘世林, 周晓国.物理化学学报, 2008, 24: 1393]


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(1140)
  • Abstract views(3172)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return