Citation: ZHENG Lei-Gang, YANG Huai-Yu. Influence of Organic Inhibitors on the Corrosion Behavior of Steel Rebar insideMortar Specimens Immersed in Saturated NaCl Solution[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2354-2360. doi: 10.3866/PKU.WHXB20100905
-
The long-term effects of four kinds of amine-alcohol based inhibitors on the corrosion behavior of steel rebar inside mortar specimens immersed in saturated NaCl solution were studied by electrochemical impendence spectroscopy (EIS), half cell corrosion potential (Ecorr), and macrocell corrosion current density (Icorr) measurements. We found that the Ecorr and the impedance modulus were higher than those in the control specimen after inhibitor addition. Additionally, Icorr decreased over the initial 100 d of immersion revealing that the steel rebar electrodes are kept in passive state and the inhibitors showed od inhibition effects. With an increase in the immersion time, Ecorr and the impedance modulus for all the inhibited mortar specimens decreased while Icorr increased. After immersion for 125 d there were no obvious differences between Ecorr and Icorr for the inhibited systems by comparison to those in the blank sample, except for the specimen containing CI-4. This suggests that the surface of the electrode changes from passive state to active state. The best inhibition was obtained in the presence of the CI-4 inhibitor. We briefly discuss the inhibition mechanismbased on the competitive adsorption of the inhibitor molecules with Cl- on the steel rebar surface.
-
-
[1]
1. Mehta, P. K.; Burrows, R. W. Concr. Int., 2001, 23(3): 57
-
[2]
2. Soylev, T. A.; Richardson, M. G. Constr. Build. Mater., 2008, 22:609
-
[3]
3. Reou, J. S.; Ann, K. Y. Mater. Chem. Phys., 2008, 109: 526
-
[4]
4. Ghods, P.; Is r, O. B.; Mcrae, G.; Miller, T. Cem. Concr. Comp.,2009, 31: 2
-
[5]
5. Monticelli, C.; Frignani, A.; Trabanelli, G. Cem. Concr. Res.,2000, 30: 635
-
[6]
6. Jamil, H. E.; Monternor, M. F.; Boulif, R. Electrochim. Acta, 2003,48: 3509
-
[7]
7. S?ylev, T. A.; McNally, C.; Richardson, M. G. Cem. Concr. Comp.,2007, 29: 357
-
[8]
8. Mechmech, L. B.; Dhouibi, L.; Ouezdou, M. B.; Triki, E.; Zucchi,F. Cem. Concr. Comp., 2008, 30: 167
-
[9]
9. Wombacher, F.; Maeder, U.; Marazzani, B. Cem. Concr. Comp.,2004, 26: 209
-
[10]
10. Ormellese, M.; Lazzari, L.; idanich, S.; Fumagalli, G.; Brenna,A. Corrosion Sci., 2009, 51: 2959
-
[11]
11. Wang, S. X.; Lin, W. W.; Zhang, J. Q.; Fang, Z. K. Journal ofChinese Society for Corrosion and Protection, 2000, 20: 15[王胜先, 林薇薇,张鉴清,方振逵.中国腐蚀与防护学报, 2000,20: 15]
-
[12]
12. Elsener, B.; Zurich, E. Corrosion of reinforcement in concrete:mechanisms, monitoring, inhibitors and rehabilitation techniques.1st ed. Cambridge England:Woodhead Publishing Limited, 2007:170-184
-
[13]
13. Ormellese, M.; Berra, M.; Bolzoni, F.; Pastore, T. Cem. Concr.Res., 2006, 36: 536
-
[14]
14. Trepanier, S. M.; Hope, B. B.; Hansson, C. M. Cem. Concr. Res.,2001, 31: 713
-
[15]
15. Fajardo, G.; Valdez, P.; Pacheco, J. Constr. Build. Mater., 2009,23: 768
-
[16]
16. Revie, R. W. Uhlig's corrosion handbook. 2nd ed. Trans. Yang,W. Beijing: Chemical Industry Press, 2005: 412-415 [Revie, R.W.尤利格腐蚀手册.杨武译.北京: 化学工业出版社, 2005:412-415]
-
[17]
17. Raupach, M.; Schieβl, P. NDT&E International, 2001, 23: 435
-
[18]
18. Saraswathy, V.; Song, H. W. Build. Enviro., 2007, 42(1): 464
-
[19]
19. Andrade, C.; Alonso, C. Constr. Build. Mater., 1996, 10(5): 315
-
[20]
20. Aramaki, K.; Tomihara, M.; Furuya, S.; Yamaguchi, M.; Nishihara,H. Corrosion Sci., 1994, 36: 1133
-
[21]
21. Aramaki, K.; Mizoguchi, M.; Nishihara, H. J. Electrochem. Soc.,1991, 138: 394
-
[22]
22. Glass, G. K.; Reddy, B.; Buenfeld, N. R. Corrosion Sci., 2000, 42(11): 2013
-
[23]
23. Flis, J.; Pickering, H.W.; Osseo-Asare, K. Electrochim. Acta,1998, 43: 1921
-
[24]
24. Hu, R. G.; Du, R. G.; Lin, C. J. Electrochemistry, 2003, 9(2): 189[胡融刚,杜荣归, 林昌健.电化学, 2003, 9(2): 189]
-
[25]
25. Sagüés, A. A.; Kranc, S. C.; Moreno, E. I. Corrosion Sci., 1995, 37(7): 1097
-
[26]
26. Qiao, G. F.; Ou, J. P. Electrochim. Acta, 2007, 52: 8008
-
[27]
27. Glass, G. K.; Hassanein, A. M.; Buenfeld, N. R. Corrosion, 1998,54(11): 887
-
[28]
28. Etteyeb, N.; Dhouibi, L.; Takenouti, H.; Alonso, M. C.; Triki, E.Electrochim. Acta, 2007, 52: 7506
-
[29]
29. Mansfeld, F. Electrochim. Acta, 1990, 35: 1533
-
[30]
30. Valek, L.; Martinez, S.; Mikulic, D.; Brnardic, I. Corrosion Sci.,2008, 50: 2705
-
[31]
31. Birbilis, N.; Nairn, K. M.; Forsyth, M. Electrochim. Acta, 2004,49: 4331
-
[1]
-
-
[1]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[2]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[3]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[4]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[5]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[6]
Shuyong Zhang , Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078
-
[7]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[8]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[9]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[12]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[13]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[14]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[15]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[16]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[17]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[18]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[19]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[20]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[1]
Metrics
- PDF Downloads(1363)
- Abstract views(2765)
- HTML views(8)