Citation: ZHENG Lei-Gang, YANG Huai-Yu. Influence of Organic Inhibitors on the Corrosion Behavior of Steel Rebar insideMortar Specimens Immersed in Saturated NaCl Solution[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2354-2360. doi: 10.3866/PKU.WHXB20100905 shu

Influence of Organic Inhibitors on the Corrosion Behavior of Steel Rebar insideMortar Specimens Immersed in Saturated NaCl Solution

  • Received Date: 29 March 2010
    Available Online: 8 July 2010

    Fund Project: 国家科技支撑计划(2007BAB27B03)资助项目 (2007BAB27B03)

  • The long-term effects of four kinds of amine-alcohol based inhibitors on the corrosion behavior of steel rebar inside mortar specimens immersed in saturated NaCl solution were studied by electrochemical impendence spectroscopy (EIS), half cell corrosion potential (Ecorr), and macrocell corrosion current density (Icorr) measurements. We found that the Ecorr and the impedance modulus were higher than those in the control specimen after inhibitor addition. Additionally, Icorr decreased over the initial 100 d of immersion revealing that the steel rebar electrodes are kept in passive state and the inhibitors showed od inhibition effects. With an increase in the immersion time, Ecorr and the impedance modulus for all the inhibited mortar specimens decreased while Icorr increased. After immersion for 125 d there were no obvious differences between Ecorr and Icorr for the inhibited systems by comparison to those in the blank sample, except for the specimen containing CI-4. This suggests that the surface of the electrode changes from passive state to active state. The best inhibition was obtained in the presence of the CI-4 inhibitor. We briefly discuss the inhibition mechanismbased on the competitive adsorption of the inhibitor molecules with Cl- on the steel rebar surface.

  • 加载中
    1. [1]

      1. Mehta, P. K.; Burrows, R. W. Concr. Int., 2001, 23(3): 57

    2. [2]

      2. Soylev, T. A.; Richardson, M. G. Constr. Build. Mater., 2008, 22:609

    3. [3]

      3. Reou, J. S.; Ann, K. Y. Mater. Chem. Phys., 2008, 109: 526

    4. [4]

      4. Ghods, P.; Is r, O. B.; Mcrae, G.; Miller, T. Cem. Concr. Comp.,2009, 31: 2

    5. [5]

      5. Monticelli, C.; Frignani, A.; Trabanelli, G. Cem. Concr. Res.,2000, 30: 635

    6. [6]

      6. Jamil, H. E.; Monternor, M. F.; Boulif, R. Electrochim. Acta, 2003,48: 3509

    7. [7]

      7. S?ylev, T. A.; McNally, C.; Richardson, M. G. Cem. Concr. Comp.,2007, 29: 357

    8. [8]

      8. Mechmech, L. B.; Dhouibi, L.; Ouezdou, M. B.; Triki, E.; Zucchi,F. Cem. Concr. Comp., 2008, 30: 167

    9. [9]

      9. Wombacher, F.; Maeder, U.; Marazzani, B. Cem. Concr. Comp.,2004, 26: 209

    10. [10]

      10. Ormellese, M.; Lazzari, L.; idanich, S.; Fumagalli, G.; Brenna,A. Corrosion Sci., 2009, 51: 2959

    11. [11]

      11. Wang, S. X.; Lin, W. W.; Zhang, J. Q.; Fang, Z. K. Journal ofChinese Society for Corrosion and Protection, 2000, 20: 15[王胜先, 林薇薇,张鉴清,方振逵.中国腐蚀与防护学报, 2000,20: 15]

    12. [12]

      12. Elsener, B.; Zurich, E. Corrosion of reinforcement in concrete:mechanisms, monitoring, inhibitors and rehabilitation techniques.1st ed. Cambridge England:Woodhead Publishing Limited, 2007:170-184

    13. [13]

      13. Ormellese, M.; Berra, M.; Bolzoni, F.; Pastore, T. Cem. Concr.Res., 2006, 36: 536

    14. [14]

      14. Trepanier, S. M.; Hope, B. B.; Hansson, C. M. Cem. Concr. Res.,2001, 31: 713

    15. [15]

      15. Fajardo, G.; Valdez, P.; Pacheco, J. Constr. Build. Mater., 2009,23: 768

    16. [16]

      16. Revie, R. W. Uhlig's corrosion handbook. 2nd ed. Trans. Yang,W. Beijing: Chemical Industry Press, 2005: 412-415 [Revie, R.W.尤利格腐蚀手册.杨武译.北京: 化学工业出版社, 2005:412-415]

    17. [17]

      17. Raupach, M.; Schieβl, P. NDT&E International, 2001, 23: 435

    18. [18]

      18. Saraswathy, V.; Song, H. W. Build. Enviro., 2007, 42(1): 464

    19. [19]

      19. Andrade, C.; Alonso, C. Constr. Build. Mater., 1996, 10(5): 315

    20. [20]

      20. Aramaki, K.; Tomihara, M.; Furuya, S.; Yamaguchi, M.; Nishihara,H. Corrosion Sci., 1994, 36: 1133

    21. [21]

      21. Aramaki, K.; Mizoguchi, M.; Nishihara, H. J. Electrochem. Soc.,1991, 138: 394

    22. [22]

      22. Glass, G. K.; Reddy, B.; Buenfeld, N. R. Corrosion Sci., 2000, 42(11): 2013

    23. [23]

      23. Flis, J.; Pickering, H.W.; Osseo-Asare, K. Electrochim. Acta,1998, 43: 1921

    24. [24]

      24. Hu, R. G.; Du, R. G.; Lin, C. J. Electrochemistry, 2003, 9(2): 189[胡融刚,杜荣归, 林昌健.电化学, 2003, 9(2): 189]

    25. [25]

      25. Sagüés, A. A.; Kranc, S. C.; Moreno, E. I. Corrosion Sci., 1995, 37(7): 1097

    26. [26]

      26. Qiao, G. F.; Ou, J. P. Electrochim. Acta, 2007, 52: 8008

    27. [27]

      27. Glass, G. K.; Hassanein, A. M.; Buenfeld, N. R. Corrosion, 1998,54(11): 887

    28. [28]

      28. Etteyeb, N.; Dhouibi, L.; Takenouti, H.; Alonso, M. C.; Triki, E.Electrochim. Acta, 2007, 52: 7506

    29. [29]

      29. Mansfeld, F. Electrochim. Acta, 1990, 35: 1533

    30. [30]

      30. Valek, L.; Martinez, S.; Mikulic, D.; Brnardic, I. Corrosion Sci.,2008, 50: 2705

    31. [31]

      31. Birbilis, N.; Nairn, K. M.; Forsyth, M. Electrochim. Acta, 2004,49: 4331


  • 加载中
    1. [1]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    2. [2]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    3. [3]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    6. [6]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(1363)
  • Abstract views(2765)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return